"Effect of proton pre-irradiation on corrosion of Zr-0.5Nb model alloys with different Nb distributions"
Zefeng Yu, Taeho Kim, Mukesh Bachhav, Xiang Liu, Adrien Couet, Lingfeng He,
Corrosion Science Volume 173
Vol. 173
2020
108790
Link
The effect of proton irradiation on corrosion rate of α-annealed and β-quenched Zr-0.5Nb alloys is investigated. The major focuses of this study are to understand i) if the nucleation of irradiation-induced platelets (IIPs)/nanoclusters requires dissolution of Nb-rich native precipitates, ii) if the irradiated native precipitates and interlaths are stable in the oxide, and iii) how much Nb content in the solid solution is suitable to lower the corrosion rate for Zr-Nb alloys. To answer these questions, the major characterization techniques used in this study are APT and (S)TEM/EDS to study the microstructure and microchemistry evolution following irradiation and oxidation. |
||
"In situ microstructural evolution in face-centered and body-centered cubic complex concentrated solid-solution alloys under heavy ion irradiation"
Michael Moorehead, Calvin Parkin, Mohamed Elbakhshwan, Jing Hu, Wei-Ying Chen, Meimei Li, Lingfeng He, Kumar Sridharan, Adrien Couet,
Acta Materialia
Vol. 198
2020
85-99
Link
This study characterizes the microstructural evolution of single-phase complex concentrated solid-
solution alloy (CSA) compositions under heavy ion irradiation with the goal of evaluating mecha-
nisms for CSA radiation tolerance in advanced fission systems. Three such alloys, Cr 18 Fe 27 Mn 27 Ni 28 ,
Cr 15 Fe 35 Mn 15 Ni 35 , and equimolar NbTaTiV, along with reference materials (pure Ni and E90 for the Cr-
FeMnNi family and pure V for NbTaTiV) were irradiated at 50 K and 773 K with 1 MeV Kr ++ ions to vari-
ous levels of displacements per atom (dpa) using in-situ transmission electron microscopy. Cryogenic irra-
diation resulted in small defect clusters and faulted dislocation loops as large as 12 nm in face-centered
cubic (FCC) CSAs. With thermal diffusion suppressed at cryogenic temperatures, defect densities were
lower in all CSAs than in their less compositionally complex reference materials indicating that point
defect production is reduced during the displacement cascade stage. High temperature irradiation of the
two FCC CSA resulted in the formation of interstitial dislocation loops which by 2 dpa grew to an average
size of 27 nm in Cr 18 Fe 27 Mn 27 Ni 28 and 10 nm in Cr 15 Fe 35 Mn 15 Ni 35 . This difference in loop growth kinet-
ics was attributed to the difference in Mn-content due to its effect on the nucleation rate by increasing
vacancy mobility or reducing the stacking-fault energy.#171118 |
||
"Irradiation-Induced Nb redistribution of ZrNb alloy: an APT study"
Zefeng Yu, Adrien Couet, Mukesh Bachhav,
Journal of Nuclear Materials
Vol. 516
2019
Link
We have investigated proton irradiation induced Nb redistribution in Zr-xNb alloy (x = 0.4, 0.5, 1.0) by using scanning transmission electron microscopy (STEM) and atom probe tomography (APT). We have found by STEM that 2MeV proton irradiation at 350°C induces precipitation of Nb-rich needle-like particles in the Zr matrix. Initially without irradiation effect, the Zr matrix only contains βNb and Laves phase native precipitates. After irradiation, in addition to the needle-like particles, we have also found by APT that Fe- and Nb-rich nanoclusters (less than 20 nm diamter) are present in the Zr matrix for Zr-0.5Nb, 1000°C annealed Zr-0.5Nb and Zr-1.0Nb. Despite different irradiation dose level, the total Nb content in the entire APT tip for all the samples ranges from 0.24 – 0.40 at. %, which is below the maximum solubility limit of 0.6 at. % Nb in Zr solid solution. After cluster removal from the Zr matrix of the irradiated samples, Nb concentration in the Zr solid solution is shown to significantly decrease with irradiation dose, which is suspected to be responsible for the improved corrosion resistance of ZrNb alloy in the reactor environment at high burnup. |
"Investigation of High-Entropy Alloys Compositions for Radiation Damage Applications" Calvin Parkin, Michael Moorehead, Zefeng Yu, Kumar Sridharan, Adrien Couet, ANS Annual Meeting 2018 June 18-22, (2018) | |
"Ion irradiation for nuclear materials research at University of Wisconsin-Madison" Li He, Gabriel Meric, Kim Kriewaldt, Kumar Sridharan, Adrien Couet, Todd Allen, The 51st Symposium of the North Eastern Accelerator Personnel September 23-27, (2018) | |
"Microstructural Characterization of High-entropy Alloy Ion Irradiated at Cryogenic Temperatures" Michael Moorehead, Calvin Parkin, Lingfeng He, Jing Hu, Meimei Li, Adrien Couet, Kumar Sridharan, TMS 2019 March 10-14, (2019) | |
"Study of gamma irradiation effect on the corrosion of zirconium alloy with scanning precession electron diffraction" Li He, Adrien Couet, Samuel Armson, Michael Preuss, Kurt Terrani, Midwest Microscopy and Microanalysis Society Meeting 2019 May 22-22, (2019) | |
"The Effect of Photon Irradiation on the Corrosion of Zirconium Alloys" Adrien Couet, Yalong He, Kurt Terrani, Samuel Armson, Michael Preuss, Taeho Kim, Mohamed Elbakhshwan, Li He, The 19th International Symposium on Zirconium in the Nuclear Industry May 20-23, (2019) |
This NSUF Profile is 60
Authored an NSUF-supported publication
Presented an NSUF-supported publication
Submitted an RTE Proposal to NSUF
Awarded 3+ RTE Proposals
Top 5% of all RTE Proposal collaborations
Reviewed 10+ RTE Proposals
APT and TEM study of redistribution of alloying elements in ZrNb alloys following proton irradiation: effects on in-reactor corrosion kinetics. - FY 2017 RTE 3rd Call, #1001
Atom probe and transmission electron microscopy studies on neutron irradiated FeCrMnNi Compositionally Complex Alloy - FY 2022 RTE 1st Call, #4459
Characterization of Oxide Layer on the Surface of High Temperature Water Corroded Zircaloy-4 In the Presence of Neutron+Gamma and Gamma Only - FY 2017 RTE 3rd Call, #1119
Characterization of Oxide Porosity in Irradiated Zirconium Pre-Transition Corrosion Films - FY 2020 RTE 2nd Call, #4128
ChemiSTEM study of Nb redistribution in M5 irradiated at high burnup - FY 2019 RTE 1st Call, #1659
Atom Probe Tomography and Transmission Electron Microscopy of Neutron-Irradiated Nanocrystalline Compositionally Complex Alloys - FY 2023 RTE 3rd Call, #4768
ChemisSTEM Characterization of Bulk Heavy Ion Irradiated Complex Concentrated Alloys - FY 2020 RTE 2nd Call, #4095
Heavy Ion Irradiation and Characterization of Light-Refractory, BCC High-Entropy Alloys - FY 2021 RTE 1st Call, #4282
High resolution (S)TEM/EDS characterization of neutron irradiated commercial Zr-Nb alloys - FY 2019 RTE 3rd Call, #2860
High-Resolution Characterization of Neutron-Irradiated Cr-Fe-Mn-Ni-(Al,Ti) High-Entropy Alloys - FY 2023 RTE 1st Call, #4521
In-situ TEM study of irradiation effects in zirconium oxides - FY 2024 RTE 3rd Call, #5166
Investigation of Void Swelling and Chemical Segregation in Heavy Ion Irradiated Compositionally Complex Alloys - FY 2023 RTE 2nd Call, #4680
IVEM Investigation of Defect Evolution in Bulk High Entropy Alloys under Single- and Dual-beam Heavy-ion Irradiation - FY 2018 RTE 3rd Call, #1610
IVEM Investigation of Defect Evolution in FCC Compositionally Complex Alloys under Dual-beam Heavy-ion Irradiation - FY 2021 RTE 1st Call, #4233
Radiation Damage in High Entropy Alloys - FY 2018 RTE 2nd Call, #1394
TEM and APT Characterization of Ion-Irradiated High-Entropy Alloys for Sodium-Cooled Fast Reactors - FY 2018 RTE 2nd Call, #1380
TEM/EDS study of Nb redistribution in ZrNb alloys following proton irradiation - FY 2018 RTE 2nd Call, #1392
Visualizing the impact of irradiation damage on alloy element redistribution accompanying Zr alloy corrosion via atom probe tomography - FY 2024 RTE 3rd Call, #5129
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program