Adrien Couet

Profile Information
Name
Professor Adrien Couet
Institution
University of Wisconsin
Position
Assistant Professor
Affiliation
University of Wisconsin-Madison
h-Index
ORCID
0000-0002-7330-5150
Expertise
Alloys, Corrosion, Electrochemistry, Irradiation, Synchrotron
Publications:
"Effect of proton pre-irradiation on corrosion of Zr-0.5Nb model alloys with different Nb distributions" Zefeng Yu, Taeho Kim, Mukesh Bachhav, Xiang Liu, Adrien Couet, Lingfeng He, Corrosion Science Volume 173 Vol. 173 2020 108790 Link
The effect of proton irradiation on corrosion rate of α-annealed and β-quenched Zr-0.5Nb alloys is investigated. The major focuses of this study are to understand i) if the nucleation of irradiation-induced platelets (IIPs)/nanoclusters requires dissolution of Nb-rich native precipitates, ii) if the irradiated native precipitates and interlaths are stable in the oxide, and iii) how much Nb content in the solid solution is suitable to lower the corrosion rate for Zr-Nb alloys. To answer these questions, the major characterization techniques used in this study are APT and (S)TEM/EDS to study the microstructure and microchemistry evolution following irradiation and oxidation.
"In situ microstructural evolution in face-centered and body-centered cubic complex concentrated solid-solution alloys under heavy ion irradiation" Michael Moorehead, Calvin Parkin, Mohamed Elbakhshwan, Jing Hu, Wei-Ying Chen, Meimei Li, Lingfeng He, Kumar Sridharan, Adrien Couet, Acta Materialia Vol. 198 2020 85-99 Link
This study characterizes the microstructural evolution of single-phase complex concentrated solid- solution alloy (CSA) compositions under heavy ion irradiation with the goal of evaluating mecha- nisms for CSA radiation tolerance in advanced fission systems. Three such alloys, Cr 18 Fe 27 Mn 27 Ni 28 , Cr 15 Fe 35 Mn 15 Ni 35 , and equimolar NbTaTiV, along with reference materials (pure Ni and E90 for the Cr- FeMnNi family and pure V for NbTaTiV) were irradiated at 50 K and 773 K with 1 MeV Kr ++ ions to vari- ous levels of displacements per atom (dpa) using in-situ transmission electron microscopy. Cryogenic irra- diation resulted in small defect clusters and faulted dislocation loops as large as 12 nm in face-centered cubic (FCC) CSAs. With thermal diffusion suppressed at cryogenic temperatures, defect densities were lower in all CSAs than in their less compositionally complex reference materials indicating that point defect production is reduced during the displacement cascade stage. High temperature irradiation of the two FCC CSA resulted in the formation of interstitial dislocation loops which by 2 dpa grew to an average size of 27 nm in Cr 18 Fe 27 Mn 27 Ni 28 and 10 nm in Cr 15 Fe 35 Mn 15 Ni 35 . This difference in loop growth kinet- ics was attributed to the difference in Mn-content due to its effect on the nucleation rate by increasing vacancy mobility or reducing the stacking-fault energy.#171118
"Irradiation-Induced Nb redistribution of ZrNb alloy: an APT study" Zefeng Yu, Adrien Couet, Mukesh Bachhav, Journal of Nuclear Materials Vol. 516 2019 Link
We have investigated proton irradiation induced Nb redistribution in Zr-xNb alloy (x = 0.4, 0.5, 1.0) by using scanning transmission electron microscopy (STEM) and atom probe tomography (APT). We have found by STEM that 2MeV proton irradiation at 350°C induces precipitation of Nb-rich needle-like particles in the Zr matrix. Initially without irradiation effect, the Zr matrix only contains βNb and Laves phase native precipitates. After irradiation, in addition to the needle-like particles, we have also found by APT that Fe- and Nb-rich nanoclusters (less than 20 nm diamter) are present in the Zr matrix for Zr-0.5Nb, 1000°C annealed Zr-0.5Nb and Zr-1.0Nb. Despite different irradiation dose level, the total Nb content in the entire APT tip for all the samples ranges from 0.24 – 0.40 at. %, which is below the maximum solubility limit of 0.6 at. % Nb in Zr solid solution. After cluster removal from the Zr matrix of the irradiated samples, Nb concentration in the Zr solid solution is shown to significantly decrease with irradiation dose, which is suspected to be responsible for the improved corrosion resistance of ZrNb alloy in the reactor environment at high burnup.
"Local chemical ordering of a neutron-irradiated CrFeMnNi compositionally complex alloy" Nathan Curtis, Sohail Shah, Mukesh Bachhav, Kaustubh Bawane, Fei Teng, Calvin Parkin, Tiankai Yao, Haiming Wen, Adrien Couet, Acta Materialia Vol. 286 2025 Link
While ion-irradiation studies are a critical first step in studying compositionally complex alloys (CCAs) for nuclear applications, they do not capture all the microstructural changes occurring under the low irradiation dose rates and different particles’ scattering patterns experienced in a nuclear reactor setting. To explore these phenomena in reactor-relevant conditions for the first time in CCA, the single-phase solid-solution Cr10Fe30Mn30Ni30 was neutron irradiated up to 6.61 displacements per atom at 395 and 579 °C. Irradiation-enhanced local chemical ordering (LCO) well beyond the range of short range ordering was observed, and is predicted to be the precursor to the precipitation of a coherent Ni-Mn L10 phase and a Cr-rich α’ phase, though TEM analysis did not indicate the presence of either in any irradiation condition. The line density of faulted dislocation loops decreased from 6.47 to 1.69 ∙ 1015 m−2 from 3.43 to 6.61 dpa at 579 °C despite no appreciable faulted loop content in the unirradiated material. LCO is expected to increase the complexity of the energy landscape within this alloy, restricting interstitial point defect mobility and creating local regions of greater stacking fault energy. These contribute to the negative correlation between irradiation dose and faulted dislocation loop density in this study, as well as the lack of void swelling observed.
"The path towards plasma facing components: A review of state-of-the-art in W-based refractory high-entropy alloys" Caleb Hatler, Ishtiaque Robin, Hyosim Kim, Nathan Curtis, Bochuan Sun, Eda Aydogan, Saryu Fensin, Adrien Couet, Enrique Martinez, Dan Thoma, Osman El Atwani, Current Opinion in Solid State and Materials Science Vol. 34 2025 Link
Developing advanced materials for plasma-facing components (PFCs) in fusion reactors is a crucial aspect for achieving sustained energy production. Tungsten (W) − based refractory high-entropy alloys (RHEAs) have emerged as promising candidates due to their superior radiation tolerance and high-temperature strength. This review paper will focus on recent advancements in W-based RHEA research, with particular emphasis on: predictive modelling with machine learning (ML) to expedite the identification of optimal RHEA compositions; additive manufacturing (AM) techniques, highlighting their advantages for rapid prototyping and high-throughput multi-compositional sample production; mechanical properties relevant to PFC applications, including hardness, high-temperature strength, and ductility; and the radiation tolerance of W-based RHEAs under irradiated conditions. Finally, the key challenges and opportunities for future research, particularly the holistic analysis of candidate compositions as well as the role of radiation activation and oxidation are identified. This review aims to provide a comprehensive overview of W-based RHEAs for fusion applications and their potential to guide the development and validation of advanced refractory high entropy alloys.
Presentations:
"Advanced Studies of Radiation Damage in Compositionally Complex Alloys" Haiming Wen, Dane Morgan, Adrien Couet, Nathan Curtis, Michael Moorehead, Mukesh Bachhav, Sohail Shah, Phalgun Nelaturu, Junliang Liu, Daniel Murray, Bao-Phong Nguyen, Dan Thoma, ” The Minerals, Metals, & Materials Society Conference March 3-7, (2024)
"Atom probe and transmission electron microscopy studies on neutron irradiated FeCrMnNi Compositionally Complex Alloy" Nathan Curtis, Calvin Parkin, Tiankai Yao, Mukesh Bachhav, Haiming Wen, Adrien Couet, Nuclear Science User Facilities’ Science Review Board Meeting August 1-1, (2023)
"High-Throughput Study of Ion Irradiation and Oxidation Responses in Multi-Principal Element Alloys" Nathan Curtis, Benoit Queylat, Michael Moorehead, Daniel Murray, Phalgun Nelaturu, Kim Kriewaldt, Bao-Phong Nguyen, Ryan Jacobs, Mukesh Bachhav, Dan Thoma, Dane Morgan, Adrien Couet, The Minerals, Metals, & Materials Society Conference March 19-23, (2023)
"Investigation of High-Entropy Alloys Compositions for Radiation Damage Applications" Calvin Parkin, Michael Moorehead, Zefeng Yu, Kumar Sridharan, Adrien Couet, ANS Annual Meeting 2018 June 18-22, (2018)
"Ion irradiation for nuclear materials research at University of Wisconsin-Madison" Li He, Gabriel Meric, Kim Kriewaldt, Kumar Sridharan, Adrien Couet, Todd Allen, The 51st Symposium of the North Eastern Accelerator Personnel September 23-27, (2018)
"Irradiation effects in a precipitation-hardened AlCuCrFeNi high entropy alloy" Nathan Curtis, Bao-Phong Nguyen, Junliang Liu, Nate Eklof, Adrien Couet, 3rd World Congress on High Entropy Alloys November 12-15, (2023)
"Machine Learning on High-Throughput Databases of Irradiation Response and Corrosion Properties of Selected Compositionally Complex Alloys for Structural Nuclear Materials" Nathan Curtis, Benoit Queylat, Michael Moorehead, Daniel Murray, Phalgun Nelaturu, Kim Kriewaldt, Nate Eklof, Bao-Phong Nguyen, Ryan Jacobs, Mukesh Bachhav, Dan Thoma, Dan Thoma, Dane Morgan, Lianyi Chen, Adrien Couet, Advanced Materials and Manufacturing Technologies Program Review May 21-23, (2024)
"Microstructural Characterization of High-entropy Alloy Ion Irradiated at Cryogenic Temperatures" Michael Moorehead, Calvin Parkin, Lingfeng He, Jing Hu, Meimei Li, Adrien Couet, Kumar Sridharan, TMS 2019 March 10-14, (2019)
"Neutron Irradiation Induced Local Chemical Ordering in CrFeMnNi and CrFeMnNiTiAl Compositionally Complex Alloys" Nathan Curtis, Sohail Shah, Kaustubh Bawane, Fei Teng, Tiankai Yao, Mukesh Bachhav, Haiming Wen, Adrien Couet, The Minerals, Metals, & Materials Society Conference March 23-27, (2025)
"Probing Irradiation Response in CrFeMnNi Compositionally Complex Alloys Using High-Throughput Methodology" Nathan Curtis, Michael Moorehead, Mukesh Bachhav, Benoit Queylat, Phalgun Nelaturu, Daniel Murray, Bao-Phong Nguyen, Nate Eklof, Zack Rielley, Dan Thoma, Dane Morgan, Adrien Couet, The Minerals, Metals, & Materials Society Conference March 23-27, (2025)
"Study of gamma irradiation effect on the corrosion of zirconium alloy with scanning precession electron diffraction" Li He, Adrien Couet, Samuel Armson, Michael Preuss, Kurt Terrani, Midwest Microscopy and Microanalysis Society Meeting 2019 May 22-22, (2019)
"The Effect of Photon Irradiation on the Corrosion of Zirconium Alloys" Adrien Couet, Yalong He, Kurt Terrani, Samuel Armson, Michael Preuss, Taeho Kim, Mohamed Elbakhshwan, Li He, The 19th International Symposium on Zirconium in the Nuclear Industry May 20-23, (2019)
NSUF Articles:
U.S. DOE Nuclear Science User Facilities Awards 35 Rapid Turnaround Experiment Research Proposals - Awards total approximately $1.3 million These projects will continue to advance the understanding of irradiation effects in nuclear fuels and materials in support of the mission of the DOE Office of Nuclear Energy. Wednesday, September 20, 2017 - Calls and Awards
RTE 1st Call Awards Announced - Projects total approximately $1.4 million These projects will continue to advance the understanding of irradiation effects in nuclear fuels and materials in support of the mission of the DOE-NE. Friday, February 8, 2019 - Calls and Awards
DOE Awards 37 RTE Proposals - Awarded projects total nearly $1.4M in access awards Tuesday, July 14, 2020 - News Release, Calls and Awards
DOE Awards Eight CINR NSUF Projects - Projects include $3M in access grants and R&D funding Monday, July 6, 2020 - Calls and Awards
NSUF awards 30 Rapid Turnaround Experiment proposals - Approximately $1.53M has been awarded. Tuesday, June 14, 2022 - Calls and Awards
NSUF Research Collaborations

In-situ TEM study of irradiation effects in zirconium oxides - FY 2024 RTE 3rd Call, #24-5166

Visualizing the impact of irradiation damage on alloy element redistribution accompanying Zr alloy corrosion via atom probe tomography - FY 2024 RTE 3rd Call, #24-5129

Atom Probe Tomography and Transmission Electron Microscopy of Neutron-Irradiated Nanocrystalline Compositionally Complex Alloys - FY 2023 RTE 3rd Call, #23-4768

Investigation of Void Swelling and Chemical Segregation in Heavy Ion Irradiated Compositionally Complex Alloys - FY 2023 RTE 2nd Call, #23-4680

High-Resolution Characterization of Neutron-Irradiated Cr-Fe-Mn-Ni-(Al,Ti) High-Entropy Alloys - FY 2023 RTE 1st Call, #23-4521

Heavy Ion Irradiation and Characterization of Light-Refractory, BCC High-Entropy Alloys - FY 2021 RTE 1st Call, #21-4282

IVEM Investigation of Defect Evolution in FCC Compositionally Complex Alloys under Dual-beam Heavy-ion Irradiation - FY 2021 RTE 1st Call, #21-4233

ChemisSTEM Characterization of Bulk Heavy Ion Irradiated Complex Concentrated Alloys - FY 2020 RTE 2nd Call, #20-4095

High resolution (S)TEM/EDS characterization of neutron irradiated commercial Zr-Nb alloys - FY 2019 RTE 3rd Call, #19-2860

IVEM Investigation of Defect Evolution in Bulk High Entropy Alloys under Single- and Dual-beam Heavy-ion Irradiation - FY 2018 RTE 3rd Call, #18-1610

Radiation Damage in High Entropy Alloys - FY 2018 RTE 2nd Call, #18-1394

TEM/EDS study of Nb redistribution in ZrNb alloys following proton irradiation - FY 2018 RTE 2nd Call, #18-1392

TEM and APT Characterization of Ion-Irradiated High-Entropy Alloys for Sodium-Cooled Fast Reactors - FY 2018 RTE 2nd Call, #18-1380