Haiming Wen

Profile Information
Name
Professor Haiming Wen
Institution
Missouri University of Science and Technology
Position
Assistant Professor
Affiliation
Missouri University of Science and Technology
CV File
Download
h-Index
23
ORCID
0000-0003-2918-3966
Expertise
Atom Probe Tomography, electron backscatter diffraction, Irradiation, Mechanical Properties, nanostructured materials, Steels
Publications:
"Annealing behavior in a high-pressure torsion-processed Fe–9Cr steel" Jiaqi Duan, Haiming Wen, Caizhi Zhou, Xiaoqing He, Rinat Islamgaliev, Ruslan Valiev, Journal of Materials Science Vol. 55 2020 6678-6695
"Discontinuous grain growth in an equal-channel angular pressing processed Fe-9Cr alloy with a heterogeneous microstructure" Jiaqi Duan, Haiming Wen, Caizhi Zhou, Xiaoqing He, Rinat Islamgaliev, Ruslan Valiev, Materials Characterization Vol. 159 2020 110004
"Effects of Al and Ti Additions on Irradiation Behavior of FeMnNiCr Multi-Principal-Element Alloy" Andrew Hoffman, Haiming Wen, Li He, Kumar Sridharan, Matthew Luebbe, Jiaqi Duan, JOM Vol. 72 2020 150-159
Two Co-free multi-principal-element alloys (MPEAs), viz. single-phase face-centered cubic (FCC) Fe30Ni30Mn30Cr10 and (Fe30Ni30Mn30Cr10)94Ti2Al4 (all in atomic percent) with FCC matrix containing Ni-Ti-Al enriched L12 (ordered FCC) secondary phase (γ′), have been developed and investigated. The alloys were ion irradiated at 300°C and 500°C to peak damage of 120 displacements per atom (dpa). Compared with the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy, in the Fe30Ni30Mn30Cr10 alloy, the dislocation loops were smaller, with a higher number density. The difference in loop size between the two MPEAs was attributed to the addition of Ti to the matrix, which was anticipated to lower the stacking fault energy and stabilize the faulted Frank loops. The γ′ phase showed good stability under irradiation, with no new γ′ precipitation or growth in existing precipitates. Both alloys showed similar irradiation-induced hardening at 300°C, but the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy exhibited lower irradiation-induced hardening at 500°C compared with the Fe30Ni30Mn30Cr10 alloy.
"Effects of the Tempering and High-Pressure Torsion Temperatures on Microstructure of Ferritic/Martensitic Steel Grade 91" Artur Ganeev, Marina Nikitina, Vil Sitdikov, Rinat Islamgaliev, Andrew Hoffman, Haiming Wen, Materials Vol. 11 2018
"Enhanced Resistance to Irradiation Induced Ferritic Transformation in Nanostructured Austenitic Steels" Andrew Hoffman, Maalavan Arivu, Haiming Wen, Li He, Kumar Sridharan, Xin Wang, Xiang Liu, Lingfeng He, Yaqiao Wu, Materialia Vol. 13 2020 Link
Irradiation induced phase transformation of γ-austenite to α-ferrite has been observed in austenitic steels for the past several decades. This transformation can be detrimental to structural materials in a nuclear reactor environment as the increased fraction of the ferritic phase can increase corrosion and embrittlement and lead to stress corrosion cracking. This transformation is caused by both strain induced martensite transformation as well as radiation induced segregation and precipitation. In this study, two radiation tolerant nanostructured 304L austenitic steels (one ultrafine grained and one nanocrystalline) were manufactured using severe plastic deformation. These nanostructured 304L steels were compared to conventional coarse-grained 304L, after self-ion irradiation at 500°C up to a peak damage of 50 displacements per atom. Phase fraction after irradiation was analyzed using grazing incidence x-ray diffraction, precession electron diffraction, and electron backscatter diffraction. Nanostructured 304L steels showed significant resistance to irradiation induced austenite to ferrite transformation. This resistance was shown to be due to a decrease in defect formation, as well as a reduction in radiation induced segregation and precipitation.
"Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe-9Cr alloy" Haiming Wen, Jiaqi Duan, Caizhi Zhou, Rinat Islamgaliev, Ruslan Valiev, Materialia Vol. 6 2019 100349
"High-pressure Torsion Assisted Segregation and Precipitation in a Fe-18Cr-8Ni Austenitic Stainless Steel" Andrew Hoffman, Haiming Wen, Rinat Islamgaliev, Ruslan Valiev, Materials Letters Vol. 243 2019 116-119
"Microstructure, strength and irradiation response of an ultra-fine grained FeNiCoCr multi-principal element alloy" Haiming Wen, Journal of Alloys and Compounds Vol. 851 2021 156796 Link
"Severe plastic deformation assisted carbide precipitation in Fe-21Cr-5Al alloy" Maalavan Arivu, Andrew Hoffman, Jiaqi Duan, Haiming Wen, Rinat Islamgaliev, Ruslan Valiev, Materials Letters Vol. 253 2019 78-81
Presentations:
"Effects of severe plastic deformation and irradiation on precipitation in ultrafine-grained steels studied using atom-probe tomography" Andrew Hoffman, Haiming Wen, 2019 TMS Annual Meeting March 10-14, (2019)
"Effects of Ti and Al Additions on Irradiation Behavior of FeMnNiCr Based High Entropy Alloys" Andrew Hoffman, Haiming Wen, Li He, Kumar Sridharan, 2019 TMS Annual Meeting March 10-14, (2019)
"Effects of Ti and Al Additions on Irradiation Behavior of FeMnNiCr Based High-Entropy Alloys" Matthew Luebbe, Andrew Hoffman, Hans Pommeranke, Li He, Kumar Sridharan, Haiming Wen, Materials Science & Technology 2019 September 29-3, (2019)
"Enhanced Austenite Stability in Nanostructured Steels During Ion Irradiation" Andrew Hoffman, Haiming Wen, Maalavan Arivu, 2020 TMS Annual Meeting February 23-27, (2020)
"Micro/Nano Structural Examination and Fission Product Identification in Neutron Irradiated AGR-1 TRISO Fuel" Terry Holesinger, Haiming Wen, 2016 International Topical Meeting on High Temperature Reactor Technology (HTR 2016) November 6-10, (2016) Link
"Microstructure evolution in irradiation-tolerant ultrafine-grained steels" Haiming Wen, Andrew Hoffman, Jiaqi Duan, 2019 TMS Annual Meeting March 10-14, (2019)
"The role of electron and atom probe tomography in characterization of nuclear fuels" Assel Aitkaliyeva, Cynthia Papesch, Yaqiao Wu, Haiming Wen, Nuclear Fuels and Structural Materials (NFSM-2016) June 12-16, (2016)
NSUF Articles:
U.S. DOE Nuclear Science User Facilities Awards 30 Rapid Turnaround Experiment Research Proposals - Awards total nearly $1.2 million The U.S. Department of Energy (DOE) Nuclear Science User Facilities (NSUF) has selected 30 new Rapid Turnaround Experiment (RTE) projects, totaling up to approximately $1.2 million. These projects will continue to advance the understanding of irradiation effects in nuclear fuels and materials in support of the mission of the DOE Office of Nuclear Energy. Wednesday, April 26, 2017 - Calls and Awards
U.S. DOE Nuclear Science User Facilities Awards 35 Rapid Turnaround Experiment Research Proposals - Awards total approximately $1.3 million These projects will continue to advance the understanding of irradiation effects in nuclear fuels and materials in support of the mission of the DOE Office of Nuclear Energy. Wednesday, September 20, 2017 - Calls and Awards
DOE Awards 33 Rapid Turnaround Experiment Research Proposals - Projects total approximately $1.5 million These projects will continue to advance the understanding of irradiation effects in nuclear fuels and materials in support of the mission of the DOE Office of Nuclear Energy. Monday, May 14, 2018 - Calls and Awards
NSUF Researcher Feature: Haiming Wen - Monday, July 20, 2020 - Researcher Highlight
NSUF awards 30 Rapid Turnaround Experiment proposals - Approximately $1.53M has been awarded. Tuesday, June 14, 2022 - Calls and Awards