"A novel approach to determine the local burnup in irradiated fuels using Atom Probe Tomography (APT)" Mukesh Bachhav, Jian Gan, Dennis Keiser, Jeffrey Giglio, Daniel Jadernas, Ann Leenaers, Sven Van den Berghe, Journal of Nuclear Materials Vol. 528 2020 Link | ||
"Characterization of Interaction Layer in U-Mo-X (X = Nb, Zr) and U-Nb-Zr vs. Al Diffusion Couples Annealed at 600 degrees C for 10 Hours"
Emmanuel Perez, Ashley Paz y Puente, Dennis Keiser, Yongho Sohn,
Defects and Diffusion Forum
Vol. 312-315
2011
1055-1062
Link
U-Mo has thus far proven to be one of the most feasible metallic fuel alloys for use in research and test reactors due to its high density and stability during irradiation. However, an adverse diffusional interaction can occur between the fuel alloy and the Al based matrix. This forms an interaction layer (IL) that has undesirable thermal properties and irradiation behavior leading to accelerated swelling and reduced fuel efficiency. This study focused on the effects of ternary alloying additions on the formation of IL between U based alloys and Al. Diffusion couples of U-8Mo-3Nb, U-7Mo-6Zr, and U-10Nb-4Zr (wt.%) vs. pure Al were assembled and annealed at 600 Degrees C for 10 hours. Both thickness and phase constituent analyses were performed via electron microscopy. The major phase constituent of the IL was determined to be the UAl3 intermetallic compound. The Nb and Zr alloying additions did not reduce growth rate of IL (1.3-1.4 m/sec1/2) as compared to couples made between binary U-Mo and Al (0.9-1.8 m/sec1/2).
|
||
"Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy"
Ke Huang, Dennis Keiser, Catherine Kammerer, Yongho Sohn,
Journal of Phase Equilibria and Diffusion
Vol. 35
2014
146-156
Link
U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10 wt.%Mo versus Mo, Zr, or Nb diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 °C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 °C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 °C according to Arrhenius relationship. The growth rate was determined to be about 103 times slower for Zr, 105 times slower for Mo and 106 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo-mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.
|
||
"Fuel-Matrix Chemical Interaction Between U-7wt.%Mo Alloy and Mg"
Ke Huang, Dennis Keiser, Yongho Sohn, H. Heinrich,
Defects and Diffusion Forum
Vol. 333
2013
199-206
Link
A solid-to-solid, U-7wt.%Mo vs. Mg diffusion couple was assembled and annealed at 550°C for 96 hours. Themicrostructurein the interdiffusion zone and the development of concentration profiles were examined via scanning electron microscopy, transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy. A TEM specimen was prepared at the interface between U-7wt.%Mo andMgusing focused ion beam in-situ lift-out. The U-7wt.%Mo alloy was bonded well tothe Mg at the atomic scale, without any evidence of oxidation, cracks or pores.Despite the good bonding, very little or negligible interdiffusion was observed.This is consistent with the expectation based on negligible solubilities according to the equilibrium phase diagrams. Along with other desirableproperties, Mgis a potential inert matrix or barrier materialfor U-Mo fuel alloy systembeing developed forthe Reduced Enrichment for Research and Test Reactor (RERTR) program. |
||
"Growth Kinetics and Microstructural Evolution during Hot Isostatic Pressing of U-10wt.%Mo Monolithic Fuel Plate in AA6061 Cladding with Zr Diffusion Barrier"
Young Joo Park, Ke Huang, Dennis Keiser, Jan-Fong Jue, Barry Rabin, G. Moore, Yongho Sohn,
Journal of Nuclear Materials
Vol. 447
2014
215-224
Link
Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.
|
||
"Interdiffusion between Potential Diffusion Barrier Mo and U-Mo Metallic Fuel Alloy for RERTR Applications"
Ke Huang, Young Joo Park, Dennis Keiser, Yongho Sohn,
Journal of Phase Equilibria and Diffusion
Vol. 34
2013
307-312
Link
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor Program. Previous investigation has shown that the interdiffusion between U and Mo in γ(bcc)-U solid solution is very slow. This investigation explored interdiffusional behavior, especially in regions with high Mo concentration, and the potential application of Mo as a barrier material to reduce the interaction between U-Mo fuel and Al alloys matrix. Solid-to-solid U-10wt.%Mo versus Mo diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 °C for 960, 720, 480, 240, 96 h, respectively. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 22 to 32 at.%, the interdiffusion coefficient decreased while the activation energy increased. The growth rate constant of the interdiffusion zone between U-10wt.%Mo versus Mo was also determined and compared to be 104-105 times lower than those of U-10wt.%Mo versus Al and U-10wt.%Mo versus Al-Si systems. Other desirable physical properties of Mo as a barrier material, such as neutron adsorption rate, melting point and thermal conductivity, are also highlighted. |
||
"Interdiffusion Between Zr Diffusion Barrier and U-Mo Alloy"
Ke Huang, Young Joo Park, Dennis Keiser, Yongho Sohn,
Journal of Phase Equilibria and Diffusion
Vol. 33
2012
443-449
Link
U-Mo alloys are being developed as low-enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant reactions have been observed between U-Mo fuels and Al or Al alloy matrix. Refractory metal Zr has been proposed as barrier material to reduce the interactions. In order to investigate the compatibility and barrier effects between U-Mo alloy and Zr, solid-to-solid U-10wt.%Mo versus Zr diffusion couples were assembled and annealed at 600, 700, 800, 900, and 1000 °C for various times. The microstructures and concentration profiles due to interdiffusion and reactions were examined via scanning electron microscopy and electron probe microanalysis, respectively. Intermetallic phase Mo2Zr was found at the interface, and its population increased when annealing temperature decreased. Diffusion paths were also plotted on the U-Mo-Zr ternary phase diagrams with good consistency. The growth rate of interdiffusion zone between U-10wt.%Mo and Zr was also calculated under the assumption of parabolic diffusion and was determined to be about 103 times lower than the growth rate of diffusional interaction layer found in diffusion couples U-10wt.%Mo versus Al or Al-Si alloy. Other desirable physical properties of Zr as barrier material, such as neutron adsorption rate, melting point, and thermal conductivity, are presented as supplementary information to demonstrate the great potential of Zr as the diffusion barrier for U-Mo fuel systems in RERTR. |
||
"Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effects in γ(bcc) Uranium-Molybdenum Alloy"
Ke Huang, Dennis Keiser, Yongho Sohn,
Metallurgical and Materials Transactions A
Vol. 44
2012
738-746
Link
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning’s formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct. |
||
"Irradiation effects on thermal properties of LWR hydride fuel"
Mehdi Balooch, Donald Olander, Kurt Terrani, David Carpenter, Gordon Kohse, Dennis Keiser, Mitch Meyer,
Journal of Nuclear Materials
Vol. 486
2017
381-390
Link
Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup. |
||
"Microstructural Analysis of As-Processed U-10wt.%Mo Monolithic Fuel Plate in AA6061 Matrix with Zr Diffusion Barrier"
Emmanuel Perez, B. Yao, Dennis Keiser, Yongho Sohn,
Journal of Nuclear Materials
Vol. 402
2010
8-14
Link
For higher U-loading in low-enriched U–10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U–10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U–10 wt.%Mo, going from Zr to U(Mo), UZr2, γ-UZr, Zr solid-solution and Mo2Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si)2Zr, (Al, Si)Zr3 (Al, Si)3Zr, and AlSi4Zr5. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system. |
||
"Microstructural Characterization of U-7Mo/Al-Si Alloy Matrix Dispersion Fuel Plates Fabricated at 500 C"
Emmanuel Perez, Dennis Keiser, Jan-Fong Jue, Bo Yao, Yongho Sohn, Curtis Clark,
Journal of Nuclear Materials
Vol. 412
2011
90-99
Link
The starting microstructure of a dispersion fuel plate will impact the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of U–Mo dispersion fuel plates, particularly the interaction layers that can form between the fuel particles and the matrix, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses have been performed on samples from depleted U–7Mo (U–7Mo) dispersion fuel plates with either Al–2 wt.% Si(Al–2Si) or AA4043 alloy matrix. It was observed that in the thick interaction layers, U(Al, Si)3 and U6Mo4Al43 were present, and in the thin interaction layers, (U, Mo) (Al, Si)3, U(Al, Si)4, U3Si3Al2, U3Si5, and possibly USi-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this investigation, the time that a dispersion fuel plate is exposed to a relatively high temperature during fabrication will impact the nature of the interaction layers around the fuel particles. Uniformly thin, Si-rich layers will develop around the U–7Mo particles for shorter exposure times, and thicker, Si-depleted layers will develop for the longer exposure times. |
||
"Microstructural Characterization of U-Nb-Zr, U-Mo-Nb, and U-Mo-Ti Alloys via Electron Microscopy"
Emmanuel Perez, Ashley Ewh, Dennis Keiser, Yongho Sohn,
Journal of Phase Equilibria and Diffusion
Vol. 31
2010
216-222
Link
Ternary uranium molybdenum alloys are being examined for use as dispersion and monolithic nuclear fuels in research and test reactors. In this study, three such ternary alloys, with compositions U-10Nb-4Zr, U-8Mo-3Nb, and U-7Mo-3Ti in wt.%, were examined using scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) with high angle annular dark field (HAADF) imaging via scanning transmission electron microscopy (STEM). These alloys were homogenized at 950 °C for 96 h and were expected to be single-phase bcc-γ-U. However, upon examination, it was determined that despite homogenization, each of the alloys contained a small volume fraction precipitate phase. Through SEM and XRD, it was confirmed that the matrix retained the bcc-γ-U phase. TEM specimens were prepared using site-specific focused ion beam (FIB) in situ lift out (INLO) technique to include at least one precipitate from each alloy. By electron diffraction, the precipitate phases for the U-10Nb-4Zr, U-8Mo-3Nb, and U-7Mo-3Ti alloys were identified as bcc-(Nb,Zr), bcc-(Mo,Nb), and bcc-(Mo,Ti) solid solutions, respectively. The composition and phase information collected in this study was then used to construct ternary isotherms for each of these alloys at 950 °C. |
||
"Microstructural development from interdiffusion and reaction between U-Mo and AA6061 alloys annealed at 600° and 550 °C"
Dennis Keiser, Emmanuel Perez, Yongho Sohn,
Journal of Nuclear Materials
Vol. 477
2016
178-192
Link
The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the UMo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, U7 wt%Mo, U10 wt%Mo, and U12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples UMo vs. high purity Al and binary AlSi alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061. |
||
"Microstructure characterization of as-fabricated and 475ºC annealed U-7wt.%Mo dispersion fuel in Al-Si alloy matrix"
Emmanuel Perez, Bo Yao, Dennis Keiser, Jan-Fong Jue, Curtis Clark, Nicolas Woolstenhulme, Yongho Sohn,
Journal of Alloys and Compounds
Vol. 509
2011
9487-9496
Link
High-density uranium (U) alloys with an increased concentration of U are being examined for the development of research and test reactors with low enriched metallic fuels. The U–Mo fuel alloy dispersed in Al–Si alloy has attracted particular interest for this application. This paper reports our detailed characterization results of as-fabricated and annealed (475 °C for 4 h) U–Mo dispersion fuels in Al–Si matrix with a Si concentration of 2 and 5 wt.%, named as “As2Si”, “As5Si”, “An2Si”, “An5Si” accordingly. Techniques employed for the characterization include scanning electron microscopy and transmission electron microscopy with specimen prepared by focused ion beam in situ lift-out. Fuel plates with Al–5 wt.% Si matrix consistently yielded thicker interaction layers developed between U–Mo particles and Al–Si matrix, than those with Al–2 wt.% Si matrix, given the same processing parameters. A single layer of interaction zone was observed in as-fabricated samples (i.e., “As2Si”, “As5Si”), and this layer mainly consisted of U3Si3Al2 phase. The annealed samples contained a two-layered interaction zone, with a Si-rich layer near the U–Mo side, and an Al-rich layer near the Al–Si matrix side. The U3Si5 appeared as the main phase in the Si-rich layer in “An2Si” sample, while both U3Si5 and U3Si3Al2 were identified in sample “An5Si”. The Al-rich layer in sample “An2Si” was amorphous, whereas that in sample “An5Si” mostly consisted of crystalline U(Al,Si)3, along with a small fraction of U(Al,Si)4 and U6Mo4Al43 phases. The influence of Si on the diffusion and reaction in the development of interaction layers in U(Mo)/Al(Si) is discussed in the light of growth-controlling mechanisms and irradiation performance. |
||
"Phase Constituents and Microstructure of Interaction Layer Formed in U-Mo Alloys vs Al Diffusion Couples Annealed at 873 K (600 °C)"
Emmanuel Perez, Dennis Keiser, Yongho Sohn,
Metallurgical and Materials Transactions A
Vol. 42
2011
3071-3083
Link
U-Mo dispersion and monolithic fuels are being developed to fulfill the requirements for research reactors, under the Reduced Enrichment for Research and Test Reactors program. In dispersion fuels, particles of U-Mo alloys are embedded in the Al-alloy matrix, while in monolithic fuels, U-Mo monoliths are roll bonded to the Al-alloy matrix. In this study, interdiffusion and microstructural development in the solid-to-solid diffusion couples, namely, U-15.7 at. pct Mo (7 wt pct Mo) vs pure Al, U-21.6 at. pct Mo (10 wt pct Mo) vs pure Al, and U-25.3 at. pct Mo (12 wt pct Mo) vs pure Al, annealed at 873 K (600 °C) for 24 hours, were examined in detail. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA) were employed to examine the development of a very fine multiphase interaction layer with an approximately constant average composition of 80 at. pct Al. Extensive TEM was carried out to identify the constituent phases across the interaction layer based on selected area electron diffraction and convergent beam electron diffraction (CBED). The cubic-UAl3, orthorhombic-UAl4, hexagonal-U6Mo4Al43, and cubic-UMo2Al20 phases were identified within the interaction layer that included two- and three-phase layers. Residual stress from large differences in molar volume, evidenced by vertical cracks within the interaction layer, high Al mobility, Mo supersaturation, and partitioning toward equilibrium in the interdiffusion zone were employed to describe the complex microstructure and phase constituents observed. A mechanism by compositional modification of the Al alloy is explored to mitigate the development of the U6Mo4Al43 phase, which exhibits poor irradiation behavior that includes void formation and swelling. |
||
"Phase constituents of Al-rich U–Mo–Al alloys examined by transmission electron microscopy"
Emmanuel Perez, Ashley Ewh, Jinwei Liu, Dennis Keiser, Yongho Sohn,
Journal of Nuclear Materials
Vol. 394
2009
160-165
Link
To supplement the understanding of diffusional interactions involving Al-rich region of the U–Mo–Al system, alloys with composition 85.7Al–11.44U–2.86Mo and 87.5Al–10U–2.5Mo in at.%, were examined to determine the equilibrium phase constituents at 500 °C. These alloys were triple arc-melted, homogenized at 500 °C for 200 h, and water-quenched to preserve the high temperature microstructure. X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (XEDS), and transmission electron microscopy (TEM) with high angle annular dark field (HAADF) imaging via scanning transmission electron microscopy (STEM) were employed for the characterization. Alloy specimens for TEM/STEM were prepared using site-specific focused ion beam (FIB) in situ lift-out (INLO) technique. Despite the homogenization time and temperature, five different phases, namely fcc-Al solid solution, cubic-UAl3, orthorhombic-UAl4, hexagonal-U6Mo4Al43 and diamond cubic-UMo2Al20, were observed. Based on U–Al, U–Mo and Al–Mo binary phase diagrams, previously proposed U–Mo–Al isotherms, and the solidification microstructure of these alloys, the Al-rich region of the equilibrium ternary isotherm at 500 °C was constructed. The fcc-Al solid solution, orthorhombic-UAl4, and diamond cubic-UMo2Al20 which were determined to be the equilibrium phases in 85.7Al–11.44U–2.86Mo and 87.5Al–10U–2.5Mo alloys. |
||
"Phase decomposition of ?-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plat"
Nicholas Eriksson, Dennis Keiser, Ryan Newell, Young Joo Park, Yongho Sohn,
Journal of Nuclear Materials
Vol. 480
2016
271-280
Link
Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ′-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ′-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ′-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ′-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C. |
||
"Phase development in a U–7 wt.% Mo vs. Al–7 wt.% Ge diffusion couple"
Emmanuel Perez, Dennis Keiser, Yongho Sohn,
Journal of Nuclear Materials
Vol. 441
2013
159-167
Link
Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U–Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U–7 wt.% Mo in contact with Al–7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge)3 phase. |
||
"Role of Si on Diffusional Interaction between U-Mo and Al-Si Alloys at 823K (550 C)"
Emmanuel Perez, Dennis Keiser, Yongho Sohn,
Metallurgical and Materials Transactions A
Vol. 44
2012
584-595
Link
U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloys fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interactions products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and lead to premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo in contact with pure Al, Al-2wt.%Si, and Al-5wt.%Si, annealed at 823K for 1, 5 and 20 hours. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed for the analysis. Diffusion couples consisting of U-Mo vs. pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. The addition of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al and Si enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In the couples, the (U,Mo)(Al,Si)3 phase was observed throughout interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.
(PDF) Role of Si on the Diffusional Interactions Between U-Mo and Al-Si Alloys at 823 K (550 °C). Available from: https://www.researchgate.net/publication/255813658/download [accessed Sep 06 2018]. |
||
"Selected Observations in Phase Constituents, Growth Kinetics and Microstructural Development of Aluminides in U-Mo vs. Al and 6061 Diffusion Couples Annealed at 600°C"
Emmanuel Perez, Dennis Keiser, Yongho Sohn,
Defects and Diffusion Forum
Vol. 289-292
2009
41-49
Link
This paper presents selected experimental observations of phase constituents, growth kinetics, and microstructural development of aluminide phases that develop in solid-to-solid diffusion couples assembled with U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. Al and 6061 alloy after a diffusion anneal at 600°C for 24 hours. Scanning electron microscopy coupled with energy dispersive spectroscopy, electron microprobe analysis, and transmission electron microscopy via focused ion beam in-situ lift-out were employed to characterize the interaction layer that develops by interdiffusion. While concentration profiles exhibited no significant gradients, microstructural analysis revealed the presence of extremely complex and nano-scale phase constituents with presence of orthorhombic--U, cubic-UAl3, orthorhombic-UAl4, hexagonal-U6Mo4Al43 and diamond cubic-UMo2Al20 phases. Presence of multi-phase layers with microstructure, which suggest a significant role of grain boundary diffusion, was observed. |
||
"STEM-EDS/EELS and APT characterization of ZrN coatings on UMo fuel kernels" Lingfeng He, Mukesh Bachhav, Dennis Keiser, Emmanuel Perez, Brandon Miller, Jian Gan, Ann Leenaers, Sven Van den Berghe, Journal of Nuclear Materials Vol. 511 2018 174-182 Link |
"Interdiffusion, Reactions and Phase Transformations Observed during Fabrication of Low Enriched Metallic Fuel System for Research and Test Reactors" Nicholas Eriksson, Dennis Keiser, Ryan Newell, Young Joo Park, Yongho Sohn, 10th International Conference on Diffusion in Materials (DIMAT-2017) May 7-12, (2017) | |
"Pore size distribution analysis of irradiated U-Mo fuels" Assel Aitkaliyeva, Charlyne Smith, Dennis Keiser, American Nuclear Society Student Conference 2018 April 5-7, (2018) | |
"Recent observations from the microstructural characterization of irradiated U-Mo fuels using advanced techniques" Dennis Keiser, Brandon Miller, Jian Gan, Lingfeng He, Daniel Jadernas, Mukesh Bachhav, NUMAT 2018 October 15-18, (2018) |
A first Investigation in Lanthanide-induced Grain Boundary Embrittlement in HT9 Cladding via In-situ Micro-tensile Testing - FY 2021 RTE 1st Call, #4345
Effects of Minor Element Additions in AA6061 on the Microstructural Evolution of the Interaction Region between U-Mo Alloys and AA6061 Claddings - FY 2014 RTE 3rd Call, #514
Fission product partitioning behavior in irradiated monolithic U-Mo fuels - FY 2022 RTE 1st Call, #4412
High-burnup U-Mo pore morphology analysis as a function of fission density and rate - FY 2019 RTE 2nd Call, #1743
Low Fluence Behavior of Metallic Fuels - FY 2010 Fall Solicitation for User Proposals, #242
Multi-Modal Serial Sectioning and Synchrotron Micro-Computed Tomography Analysis of High Burnup Nuclear Fuels - FY 2019 RTE 3rd Call, #2844
Pore size distribution in U-Mo fuel irradiated to high burnup - FY 2017 RTE 2nd Call, #917
Pore size distribution in U-Mo fuel irradiated to low burnup - FY 2017 RTE 3rd Call, #1033
The impact of grain orientation on the nucleation of fission gas bubbles in U-Mo fuel - FY 2019 RTE 2nd Call, #1806
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program