Young Joo Park

Profile Information
Name
Young Joo Park
Institution
University of Central Florida
Publications:
"Diffusional Interaction between U-10wt.%Zr and Fe at 903 K, 923 K, and 953 K (630 C, 650 C, and 680 C)" Keqin Huang, Young Joo Park, Ashley Paz y Puente, H. S. Lee, Bulent Sencer, Rory Kennedy, Yongho Sohn, Metallurgical and Materials Transactions A Vol. 46 2014 Link
U-Zr metallic fuels cladded in Fe-alloys are being considered for application in an advanced sodium-cooled fast reactor that can recycle the U-Zr fuels and minimize the long-lived actinide waste. To understand the complex fuel-cladding chemical interaction between the U-Zr metallic fuels with Fe-alloys, a systematic multicomponent diffusion study was carried out using solid-to-solid diffusion couples. The U-10 wt pct Zr vs pure Fe diffusion couples were assembled and annealed at temperatures, 903 K, 923 K, and 953 K (630 °C, 650 °C, and 680 °C) for 96 hours. Development of microstructure, phase constituents, and compositions developed during the thermal anneals were examined by scanning electron microscopy, transmission electron microscopy, and X-ray energy dispersive spectroscopy. Complex microstructure consisting of several layers that include phases such as U6Fe, UFe2, ZrFe2, a-U, ß-U, Zr-precipitates, ?, ?, and ? were observed. Multi-phase layers were grouped based on phase constituents and microstructure, and the layer thicknesses were measured to calculate the growth constant and activation energy. The local average compositions through the interaction layer were systematically determined, and employed to construct semi-quantitative diffusion paths on isothermal U-Zr-Fe ternary phase diagrams at respective temperatures. The diffusion paths were examined to qualitatively estimate the diffusional behavior of individual components and their interactions. Furthermore, selected area electron diffraction analyses were carried out to determine, for the first time, the exact crystal structure and composition of ?, ?, and ?-phases. The ?, ?, and ?-phases were identified as Pnma(62) Fe(Zr,U), I4/mcm(140) Fe(Zr,U)2, and P42/mnm(136) U3(Zr,Fe), respectively.
"Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys" Ke Huang, Young Joo Park, Le Zhou, Yongho Sohn, Kevin Coffey, Bulent Sencer, Rory Kennedy, Journal of Nuclear Materials Vol. 451 2014 372-378 Link
Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.
"Growth Kinetics and Microstructural Evolution during Hot Isostatic Pressing of U-10wt.%Mo Monolithic Fuel Plate in AA6061 Cladding with Zr Diffusion Barrier" Young Joo Park, Ke Huang, Dennis Keiser, Jan-Fong Jue, Barry Rabin, G. Moore, Yongho Sohn, Journal of Nuclear Materials Vol. 447 2014 215-224 Link
Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.
"Interdiffusion and Reaction Between Uranium and Iron" Ke Huang, Young Joo Park, Ashley Ewh, Bulent Sencer, Rory Kennedy, Kevin Coffey, Yongho Sohn, Journal of Nuclear Materials Vol. 424 2012 82-88 Link
Metallic uranium alloy fuels cladded in stainless steel are being examined for fast reactors that operate at high temperature. In this work, solid-to-solid diffusion couples were assembled between pure U and Fe, and annealed at 853 K, 888 K and 923 K where U exists as orthorhombic α, and at 953 K and 973 K where U exists as tetragonal β. The microstructures and concentration profiles developed during annealing were examined by scanning electron microscopy and electron probe microanalysis, respectively. U6Fe and UFe2 intermetallics developed in all diffusion couples, and U6Fe was observed to grow faster than UFe2. The interdiffusion fluxes of U and Fe were calculated to determine the integrated interdiffusion coefficients in U6Fe and UFe2. The extrinsic (KI) and intrinsic growth constants (KII) of U6Fe and UFe2 were also calculated according to Wagner’s formalism. The difference between KI and KII of UFe2 indicate that its growth was impeded by the fast-growing U6Fe phase. However, the thin UFe2 played only a small role on the growth of U6Fe as its KI and KII values were determined to be similar. The allotropic transformation of uranium (orthorhombic α to tetragonal β phase) was observed to influence the growth of U6Fe directly, because the growth rate of U6Fe changed based on variation of activation energy. The change in chemical potential and crystal structure of U due to the allotropic transformation affected the interdiffusion between U and U6Fe. Faster growth of U6Fe is also examined with respect to various factors including crystal structure, phase diagram, and diffusion.
"Interdiffusion between Potential Diffusion Barrier Mo and U-Mo Metallic Fuel Alloy for RERTR Applications" Ke Huang, Young Joo Park, Dennis Keiser, Yongho Sohn, Journal of Phase Equilibria and Diffusion Vol. 34 2013 307-312 Link
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor Program. Previous investigation has shown that the interdiffusion between U and Mo in γ(bcc)-U solid solution is very slow. This investigation explored interdiffusional behavior, especially in regions with high Mo concentration, and the potential application of Mo as a barrier material to reduce the interaction between U-Mo fuel and Al alloys matrix. Solid-to-solid U-10wt.%Mo versus Mo diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 °C for 960, 720, 480, 240, 96 h, respectively. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 22 to 32 at.%, the interdiffusion coefficient decreased while the activation energy increased. The growth rate constant of the interdiffusion zone between U-10wt.%Mo versus Mo was also determined and compared to be 104-105 times lower than those of U-10wt.%Mo versus Al and U-10wt.%Mo versus Al-Si systems. Other desirable physical properties of Mo as a barrier material, such as neutron adsorption rate, melting point and thermal conductivity, are also highlighted.
"Interdiffusion Between Zr Diffusion Barrier and U-Mo Alloy" Ke Huang, Young Joo Park, Dennis Keiser, Yongho Sohn, Journal of Phase Equilibria and Diffusion Vol. 33 2012 443-449 Link
U-Mo alloys are being developed as low-enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant reactions have been observed between U-Mo fuels and Al or Al alloy matrix. Refractory metal Zr has been proposed as barrier material to reduce the interactions. In order to investigate the compatibility and barrier effects between U-Mo alloy and Zr, solid-to-solid U-10wt.%Mo versus Zr diffusion couples were assembled and annealed at 600, 700, 800, 900, and 1000 °C for various times. The microstructures and concentration profiles due to interdiffusion and reactions were examined via scanning electron microscopy and electron probe microanalysis, respectively. Intermetallic phase Mo2Zr was found at the interface, and its population increased when annealing temperature decreased. Diffusion paths were also plotted on the U-Mo-Zr ternary phase diagrams with good consistency. The growth rate of interdiffusion zone between U-10wt.%Mo and Zr was also calculated under the assumption of parabolic diffusion and was determined to be about 103 times lower than the growth rate of diffusional interaction layer found in diffusion couples U-10wt.%Mo versus Al or Al-Si alloy. Other desirable physical properties of Zr as barrier material, such as neutron adsorption rate, melting point, and thermal conductivity, are presented as supplementary information to demonstrate the great potential of Zr as the diffusion barrier for U-Mo fuel systems in RERTR.
"Phase decomposition of ?-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plat" Nicholas Eriksson, Dennis Keiser, Ryan Newell, Young Joo Park, Yongho Sohn, Journal of Nuclear Materials Vol. 480 2016 271-280 Link
Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ′-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ′-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ′-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ′-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.
"Radiation effects on interface reactions of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni)" Bulent Sencer, Lin Shao, Yongho Sohn, Di Chen, Chaochen Wei, Michael Martin, Xuemei Wang, Young Joo Park, Ed Dein, Kevin Coffey, Rory Kennedy, Journal of Nuclear Materials Vol. 456 2015 302-310 Link
We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 °C or 550 °C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reach the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.
Presentations:
"Interdiffusion, Reactions and Phase Transformations Observed during Fabrication of Low Enriched Metallic Fuel System for Research and Test Reactors" Nicholas Eriksson, Dennis Keiser, Ryan Newell, Young Joo Park, Yongho Sohn, 10th International Conference on Diffusion in Materials (DIMAT-2017) May 7-12, (2017)