"Damage tolerant nanotwinned metals with nanovoids under radiation environments" Youxing Chen, Kaiyuan Yu, Lin Shao, Haiyan Wang, Mark KirK, Jian Wang, Xinghang Zhang, Nature Communications Vol. 6 2015 Link | ||
"Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces" Youxing Chen, Engang Fu, Kaiyuan Yu, Miao Song, Yue Liu, Yongqiang Wang, Haiyan Wang, Xinghang Zhang, Journal of Materials Research Vol. 30 2015 1300 Link | ||
"In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni"
Kaiyuan Yu, Youxing Chen, Marquis Kirk, Haiyan Wang, Meimei Li, Xinghang Zhang,
Metallurgical and Materials Transactions A
Vol. 44
2013
1966
Link
Significant microstructural damage, in the form of defect clusters, typically occurs in metals subjected to heavy ion irradiation. High angle grain boundaries (GBs) have long been postulated as sinks for defect clusters, like dislocation loops. Here, we provide direct evidence, via in situ Kr ion irradiation within a transmission electron microscope, that high angle GBs in nanocrystalline (NC) Ni, with an average grain size of ~55 nm, can effectively absorb irradiation-induced dislocation loops and segments. These high angle GBs significantly reduce the density and size of irradiation-induced defect clusters in NC Ni compared to their bulk counterparts, and thus NC Ni achieves significant enhancement of irradiation tolerance. |
||
"In situ neutron diffraction study on temperature dependent deformation mechanisms of ultrafine grained austenitic Fe-14Cr-16Ni alloy" Bjorn Clausen, Stuart Maloy, Cheng Sun, Kaiyuan Yu, International Journal of Plasticity Vol. 53 2014 125-134 Link | ||
"In situ Observation of Defect Annihilation in Kr Ion-Irradiated Bulk Fe/Amorphous-Fe2 Zr Nanocomposite Alloy" Kaiyuan Yu, Zhe Fan, Youxing Chen, Miao Song, Yue Liu, Haiyan Wang, Mark Kirk, Meimei Li, Xinghang Zhang, Materials Research Letters Vol. 3 2014 35 Link | ||
"In situ studies of irradiation induced twin boundary migration in nanotwinned Ag" Kaiyuan Yu, Haiyan Wang, Mark Kirk, Xinghang Zhang, Scripta Materialia Vol. 69 2013 385 Link | ||
"In situ studies of Kr ion irradiation response of Fe/Y2O3 nanolayers" Youxing Chen, Liang Jiao, Cheng Sun, Miao Song, Kaiyuan Yu, Yue Liu, Meimei Li, Haiyan Wang, Xinghang Zhang, Journal of Nuclear Materials Vol. 452 2014 321 Link | ||
"In situ studies on radiation tolerance of nanotwinned Cu" Youxing Chen, Jin Li, Kaiyuan Yu, Haiyan Wang, Meimei Li, Xinghang Zhang, Acta Materialia Vol. 111 2016 148 Link | ||
"In situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals" Jin Li, Kaiyuan Yu, Youxing Chen, Miao Song, Haiyan Wang, Mark Kirk, Meimei Li, Xinghang Zhang, Nano Letters Vol. 15 2015 2922 Link | ||
"Measurement of heavy ion irradiation induced in-plane strain in patterned face-centered-cubic metal films: an in situ study" Kaiyuan Yu, Youxing Chen, Jin Li, Yue Liu, Haiyan Wang, Meimei Li, Xinghang Zhang, Nano Letters Vol. 16 2016 7481–7489 Link | ||
"Radiation damage in nanostructured materials" Xinghang Zhang, Khalid Hattar, Youxing Chen, Lin Shao, Jin Li, Cheng Sun, Kaiyuan Yu, Nan Li, Mitra Taheri, Haiyan Wang, Progress in Materials Science Vol. 96 2018 217-321 Link | ||
"Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals" Kaiyuan Yu, Cheng Sun, Yue Liu, Haiyan Wang, Mark Kirk, Meimei Li, Xinghang Zhang, Nature Communications Vol. 4 2013 Link |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program