Janne Pakarinen

Profile Information
Name
Janne Pakarinen
Institution
Consultant
Publications:
"2.6 MeV proton irradiation effects on the surface integrity of depleted UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Andrew Nelson, Janne Pakarinen, Nuclear Instruments and Methods B Vol. 319 2014 100-106 Link
The effect of low temperature proton irradiation in depleted uranium dioxide was examined as a function of fluence. With 2.6 MeV protons, the fluence limit for preserving a good surface quality was found to be relatively low, about 1.4 and 7.0 × 1017 protons/cm2 for single and poly crystalline samples, respectively. Upon increasing the fluence above this threshold, severe surface flaking and disintegration of samples was observed. Based on scanning electron microscopy (SEM) and X-ray diffraction (XRD) observations the causes of surface failure were associated to high H atomic percent at the peak damage region due to low solubility of H in UO2. The resulting lattice stress is believed to exceed the fracture stress of the crystal at the observed fluencies. The oxygen point defects from the displacement damage may hinder the H diffusion and further increase the lattice stress, especially at the peak damage region.
"Bubble Character, Kr Distribution and Chemical Equilibrium in UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Lingfeng He, Hunter Henderson, Michele Manuel, Andrew Nelson, Janne Pakarinen, Billy Valderrama, Journal of Nuclear Materials Vol. 2015 Link
"Bubble evolution in Kr-irradiated UO2 during annealing" Lingfeng He, Xianming Bai, Janne Pakarinen, Brian Jaques, Jian Gan, Andrew Nelson, Anter EL-AZAB, Todd Allen, Journal of Nuclear Materials Vol. 496 2017 242-250 Link
Transmission electron microscopy observation of Kr bubble evolution in polycrystalline UO2 annealed at high temperature was conducted in order to understand the inert gas behavior in oxide nuclear fuel. The average diameter of intragranular bubbles increased gradually from 0.8 nm in as-irradiated sample at room temperature to 2.6 nm at 1600 °C and the bubble size distribution changed from a uniform distribution to a bimodal distribution above 1300 °C. The size of intergranular bubbles increased more rapidly than intragranular ones and bubble denuded zones near grain boundaries formed in all the annealed samples. It was found that high-angle grain boundaries held bigger bubbles than low-angle grain boundaries. Complementary atomistic modeling was conducted to interpret the effects of grain boundary character on the Kr segregation. The area density of strong segregation sites in the high-angle grain boundaries is much higher than that in the low angle grain boundaries.
"Bubble formation and Kr distribution in Kr-irradiated UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Andrew Nelson, Janne Pakarinen, Billy Valderrama, Lingfeng He, Abdel-Rahman Hassan, Hunter Henderson, Marquis Kirk, Michele Manuel, Journal of Nuclear Materials Vol. 456 2015 125-132 Link
In situ and ex situ transmission electron microscopy observation of small Kr bubbles in both single-crystal and polycrystalline UO2 were conducted to understand the inert gas bubble behavior in oxide nuclear fuel. The bubble size and volume swelling are shown as weak functions of ion dose but strongly depend on the temperature. The Kr bubble formation at room temperature was observed for the first time. The depth profiles of implanted Kr determined by atom probe tomography are in good agreement with the calculated profiles by SRIM, but the measured concentration of Kr is about 1/4 of the calculated concentration. This difference is mainly due to low solubility of Kr in UO2 matrix and high release of Kr from sample surface under irradiation.
"Bubble, stoichiometry, and chemical equilibrium of krypton-irradiated UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Lingfeng He, Michele Manuel, Janne Pakarinen, Billy Valderrama, Abdel-Rahman Hassan, Marquis Kirk, Andrew Nelson, Journal of Nuclear Materials Vol. 456 2015 125-132 Link
In situ and ex situ transmission electron microscopy observation of small Kr bubbles in bothsingle-crystal and polycrystalline UO2 were conducted to understand the inert gas bubblebehavior in oxide nuclear fuel. The bubble size and volume swelling are shown as a weakfunction of ion dose but strongly depend on the temperature. The Kr bubble formation at roomtemperature was observed for the first time. The depth profiles of implanted Kr determined byatom probe tomography are in good agreement with the calculated profiles by SRIM, but themeasured concentration of Kr is about 1/3 of calculated one. This difference is mainly due to lowsolubility of Kr in UO2 matrix, which has been confirmed by both density-functional theorycalculations and chemical equilibrium analysis.
"Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide" Todd Allen, Darryl Butt, Jian Gan, Lingfeng He, Hunter Henderson, Brian Jaques, Michele Manuel, Janne Pakarinen, Billy Valderrama, Journal of Metals Vol. 66 2014 2562-2568 Link
Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identi?ed that differences in grain boundary structure have a signi?cant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted UO2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000C, 1300C, and 1600C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO2 samples.
"In Situ TEM Observation of Dislocation Evolution in Polycrystalline UO2" Todd Allen, Jian Gan, Mahima Gupta, Janne Pakarinen, Lingfeng He, Marquis Kirk, JOM Vol. 66 2014 2553-2561 Link
In situ transmission electron microscopy observation of polycrystalline UO2 (with average grain size of about 5 µm) irradiated with Kr ions at 600°C and 800°C was conducted to understand the radiation-induced dislocation evolution under the influence of grain boundaries. The dislocation evolution in the grain interior of polycrystalline UO2 was similar under Kr irradiation at different ion energies and temperatures. As expected, it was characterized by the nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation lines and tangles at high doses. For the first time, a dislocation-denuded zone was observed near a grain boundary in the 1-MeV Kr-irradiated UO2 sample at 800°C. The denuded zone in the vicinity of grain boundary was not found when the irradiation temperature was at 600°C. The suppression of dislocation loop formation near the boundary is likely due to the enhanced interstitial diffusion toward grain boundary at the high temperature.
"In-Situ TEM Observation of Dislocation Evolution in Kr-Irradiated UO2 Single Crystal" Todd Allen, Jian Gan, Mahima Gupta, Janne Pakarinen, Clarissa Yablinsky, Marquis Kirk, Xianming Bai, Journal of Nuclear Materials Vol. 443 2013 71-77 Link
In situ transmission electron microscopy (TEM) observation of UO2 single crystal irradiated with Kr ions at high temperatures was conducted to understand the dislocation evolution due to high-energy radiation. The dislocation evolution in UO2 single crystal is shown to occur as nucleation and growth of dislocation loops at low-irradiation doses, followed by transformation to extended dislocation segments and networks at high doses, as well as shrinkage and annihilation of some loops and dislocations due to high temperature annealing. Generally the trends of dislocation evolution in UO2 were similar under Kr irradiation at different ion energies and temperatures (150 keV at 600 °C and 1 MeV at 800 °C) used in this work. Interstitial-type dislocation loops with Burgers vector along 〈1 1 0〉 were observed in the Kr-irradiated UO2. The irradiated specimens were denuded of dislocation loops near the surface.
"Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel" Todd Allen, Yiren Chen, Zhangbo Li, Wei-Yang Lo, Janne Pakarinen, Yaqiao Wu, Yong Yang, Journal of Nuclear Materials Vol. 466 2015 201-207 Link
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019 n/cm2, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.
"Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation" Anter EL-AZAB, Jian Gan, Marat Khafizov, Andrew Nelson, Janne Pakarinen, Chris Wetteland, Lingfeng He, David Hurley, Todd Allen, Journal of Nuclear Materials Vol. 454 2014 283-289 Link
The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in X-ray diffraction after ion irradiation up to 5 × 1016 He2+/cm2 at low-temperature (<200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 μm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 μm) in the sample subjected to 5 × 1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9 × 1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55% for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.
"Microstructure evolution in Xe-irradiated UO2 at room temperature" Todd Allen, Anter EL-AZAB, Jian Gan, Lingfeng He, Janne Pakarinen, Marquis Kirk, Andrew Nelson, Xianming Bai, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Vol. 330 2014 55-60 Link
In situ Transmission Electron Microscopy was conducted for single crystal UO2 to understand the microstructure evolution during 300 keV Xe irradiation at room temperature. The dislocation microstructure evolution was shown to occur as nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation segments and tangles at higher doses. Xe bubbles with dimensions of 1-2 nm were observed after room-temperature irradiation. Electron Energy Loss Spectroscopy indicated that UO2 remained stoichiometric under room temperature Xe irradiation.
"Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys" Samuel A. Briggs, Khalid Hattar, Janne Pakarinen, Kumar Sridharan, Mitra Taheri, Christopher Barr, Mahmood Mamivand, Dane Morgan, Journal of Nuclear Materials Vol. Volume 479 2016 48-58 Link
Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni4+ ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy.
"Subsurface imaging of grain microstructure using picosecond ultrasonics" Darryl Butt, Hunter Henderson, David Hurley, Brian Jaques, Marat Khafizov, Andrew Nelson, Janne Pakarinen, Michele Manuel, Lingfeng He, Acta Materialia Vol. 112 2016 1476-1477 Link
We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors gigahertz frequency Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonic propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. A subsurface image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this subsurface imaging capability using a polycrystalline UO2 sample. Cross section liftout analysis of the grain boundary using electron microscopy was used to verify our imaging results.
Presentations:
"Irradiation Effects in Aged Cast Duplex Stainless Steels" Janne Pakarinen, Yong Yang, TMS 2014 February 16-20, (2014)
"Kr and Xe Bubble Characterization in CeO2" Todd Allen, Jian Gan, Mahima Gupta, Janne Pakarinen, TMS 2014 February 16-20, (2014)
"Microstructural Investigations of Kr and Xe Irradiated UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Lingfeng He, Hunter Henderson, Michele Manuel, Janne Pakarinen, Billy Valderrama, Energy Frontier Research Centers Principal Investigators Meeting July 18-19, (2013)
"Nano-scale Irradiation Induced Chemistry Changes in Oxide" Todd Allen, Jian Gan, Lingfeng He, Hunter Henderson, Michele Manuel, Janne Pakarinen, Billy Valderrama, 2014 TMS Annual Meeting February 16-20, (2014)
"Nano-scale Irradiation Induced Chemistry Changes in Oxide Fuel Materials" Todd Allen, Jian Gan, Hunter Henderson, Janne Pakarinen, Billy Valderrama, TMS 2014 February 16-20, (2014)
"Radiation Effects in UO2" Todd Allen, Jian Gan, Mahima Gupta, Michele Manuel, Andrew Nelson, Janne Pakarinen, Billy Valderrama, TMS 2014 February 16-20, (2014)