Billy Valderrama

Profile Information
Name
Billy Valderrama
Institution
University of Florida
Publications:
"Bubble Character, Kr Distribution and Chemical Equilibrium in UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Lingfeng He, Hunter Henderson, Michele Manuel, Andrew Nelson, Janne Pakarinen, Billy Valderrama, Journal of Nuclear Materials Vol. 2015 Link
"Bubble formation and Kr distribution in Kr-irradiated UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Andrew Nelson, Janne Pakarinen, Billy Valderrama, Lingfeng He, Abdel-Rahman Hassan, Hunter Henderson, Marquis Kirk, Michele Manuel, Journal of Nuclear Materials Vol. 456 2015 125-132 Link
In situ and ex situ transmission electron microscopy observation of small Kr bubbles in both single-crystal and polycrystalline UO2 were conducted to understand the inert gas bubble behavior in oxide nuclear fuel. The bubble size and volume swelling are shown as weak functions of ion dose but strongly depend on the temperature. The Kr bubble formation at room temperature was observed for the first time. The depth profiles of implanted Kr determined by atom probe tomography are in good agreement with the calculated profiles by SRIM, but the measured concentration of Kr is about 1/4 of the calculated concentration. This difference is mainly due to low solubility of Kr in UO2 matrix and high release of Kr from sample surface under irradiation.
"Bubble, stoichiometry, and chemical equilibrium of krypton-irradiated UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Lingfeng He, Michele Manuel, Janne Pakarinen, Billy Valderrama, Abdel-Rahman Hassan, Marquis Kirk, Andrew Nelson, Journal of Nuclear Materials Vol. 456 2015 125-132 Link
In situ and ex situ transmission electron microscopy observation of small Kr bubbles in bothsingle-crystal and polycrystalline UO2 were conducted to understand the inert gas bubblebehavior in oxide nuclear fuel. The bubble size and volume swelling are shown as a weakfunction of ion dose but strongly depend on the temperature. The Kr bubble formation at roomtemperature was observed for the first time. The depth profiles of implanted Kr determined byatom probe tomography are in good agreement with the calculated profiles by SRIM, but themeasured concentration of Kr is about 1/3 of calculated one. This difference is mainly due to lowsolubility of Kr in UO2 matrix, which has been confirmed by both density-functional theorycalculations and chemical equilibrium analysis.
"Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide" Todd Allen, Darryl Butt, Jian Gan, Lingfeng He, Hunter Henderson, Brian Jaques, Michele Manuel, Janne Pakarinen, Billy Valderrama, Journal of Metals Vol. 66 2014 2562-2568 Link
Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identi?ed that differences in grain boundary structure have a signi?cant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted UO2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000C, 1300C, and 1600C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO2 samples.
"Fission Products in Nuclear Fuel: Comparison of Simulated Distribution with Correlative Characterization Techniques" Anter EL-AZAB, Jian Gan, Billy Valderrama, Clarissa Yablinsky, Microscopy and Microanalysis Vol. 19 2013 968-969 Link
During the fission process in a nuclear reactor, uranium dioxide (UO2) fuel material is irradiated, forming fission products (FPs). The addition of FPs alters the path phonons travel in UO2, detrimentally altering the thermal conductivity of the fuel. [1] To improve fuel performance, a fundamental understanding of the role of insoluble FPs, such as Xenon (Xe), during microstructural evolution is critical. Correlative characterization techniques where atom probe tomography (APT) is paired with transmission electron microscopy (TEM) can provide unique insights into the segregation behavior of FPs. Coupling these techniques with computer simulations of fission product distribution provide deeper understanding of FP migration during service. Although there are limitations with each of these techniques in isolation, significant insight into material behavior can be gained with the concurrent and synergistic pairing of multiple experimental and computational techniques.
"Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography" Jian Gan, Billy Valderrama, Hunter Henderson, Michele Manuel, Journal of Nuclear Materials Vol. 459 2015 37-43 Link
Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO2). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporation regimes are present in UO2. Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate.
"Investigation of material property influenced stoichiometric deviations as evidenced during UV laser-assisted atom probe tomography in fluorite oxides" Todd Allen, Jian Gan, Hunter Henderson, Michele Manuel, Billy Valderrama, Clarissa Yablinsky, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms Vol. 359 2015 107-114 Link
Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO2) and uranium oxide (UO2) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors.
"Near Surface Stoichiometry in UO2: A Density Functional Theory Study" Todd Allen, Hunter Henderson, Michele Manuel, Billy Valderrama, Journal of Chemistry Vol. 2015 2015 1-8 Link
The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300K with a depth around 3 nm to near-stoichiometric at 1000K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.
"Structure and properties of uranium oxide thin films deposited by pulsed dc magnetron sputtering" Michele Manuel, Billy Valderrama, Jianliang Lin, Isaac Dahan, Applied Surface Science Vol. 301 2014 475-480 Link
Crystalline uranium oxide thin films were deposited in an unbalanced magnetron sputtering system by sputtering from a depleted uranium target in an Ar + O2 mixture using middle frequency pulsed dc magnetron sputtering. The substrate temperature was constantly maintained at 500 °C. Different uranium oxide phases (including UO2-x, UO2, U3O7 and U3O8) were obtained by controlling the percentage of the O2 flow rate to the total gas flow rate (fO2) in the chamber. The crystal structure of the films was characterized using X-ray diffraction and the microstructure of the films was studied using transmission electron microscopy and atom probe tomography. When the fO2 was below 10%, the film contains a mixture of metallic uranium and UO2-x phases. As the fO2 was controlled in the range of 10–13%, UO2 films with a (2 2 0) preferential orientation were obtained. The oxide phase rapidly changed to a mixture of U3O7 and U3O8 as the fO2 was increased to the range of 15–18%. Further increasing the fO2 to 20% and above, polycrystalline U3O8 thin films with a (0 0 1) preferential orientation were formed. The hardness and Young's modulus of the uranium oxide films were evaluated using nanoindentation. The film containing a single UO2 phase exhibited the maximum hardness of 14.3 GPa and a Young's modulus of 195 GPa. The UO2 thin film also exhibited good thermal stability in that no phase change was observed after annealing at 600 °C in vacuum for 104 h.
Presentations:
"Characterization of Oxide Fuel Surface Chemistry with Atom Probe Tomography" Anter EL-AZAB, Jian Gan, Hunter Henderson, Michele Manuel, Billy Valderrama, 2013 ANS Winter Meeting November 10-13, (2013)
"Comparison of Computationally Simulated Fission Product Distribution with Correlative Characterization Techniques in Surrogate Nuclear Fuel Materials" Todd Allen, Jian Gan, Lingfeng He, Hunter Henderson, Michele Manuel, Billy Valderrama, 2013 SACNAS National Conference October 2-6, (2013)
"Fission Products in Nuclear Fuel: Comparison of Simulated Distribution with Correlative Characterization Techniques" Todd Allen, Anter EL-AZAB, Jian Gan, Lingfeng He, Hunter Henderson, Michele Manuel, Billy Valderrama, Clarissa Yablinsky, Microscopy and Microanalysis August 4-8, (2012)
"Microstructural Investigations of Kr and Xe Irradiated UO2" Todd Allen, Anter EL-AZAB, Jian Gan, Mahima Gupta, Lingfeng He, Hunter Henderson, Michele Manuel, Janne Pakarinen, Billy Valderrama, Energy Frontier Research Centers Principal Investigators Meeting July 18-19, (2013)
"Nano-scale Irradiation Induced Chemistry Changes in Oxide" Todd Allen, Jian Gan, Lingfeng He, Hunter Henderson, Michele Manuel, Janne Pakarinen, Billy Valderrama, 2014 TMS Annual Meeting February 16-20, (2014)
"Nano-scale Irradiation Induced Chemistry Changes in Oxide Fuel Materials" Todd Allen, Jian Gan, Hunter Henderson, Janne Pakarinen, Billy Valderrama, TMS 2014 February 16-20, (2014)
"Radiation Effects in UO2" Todd Allen, Jian Gan, Mahima Gupta, Michele Manuel, Andrew Nelson, Janne Pakarinen, Billy Valderrama, TMS 2014 February 16-20, (2014)
NSUF Research Collaborations

Atom Probe Tomography to Study Annealing Temperature Dependence on Krypton Bubble Clustering in Uranium Dioxide - FY 2013 RTE Solicitation, #397

Atom Probe Tomography to Study Fission Product Damage in Model Nuclear Fuel - FY 2011 RTE Solicitation, #325

Atom Probe Tomography to Study Helium Segregation and Bubble Formation in Uranium Dioxide - FY 2013 RTE Solicitation, #395

Atom Probe Tomography to Study the Effect of Surfaces on the Chemistry of Depleted UO2 - FY 2012 RTE Solicitation, #382

Electron Backscatter Diffraction and Atom Probe Tomography to Study Grain Boundary Chemistry Variation in Off Stoichiometric Uranium Dioxide Thin Films - FY 2013 RTE Solicitation, #429

Electron Backscatter Diffraction and Atom Probe Tomography to Study Krypton Segregation Behavior in Uranium Dioxide - FY 2013 RTE Solicitation, #409

In situ ion irradiation and high resolution microstructure and microchemistry analysis of accident tolerant fuels - FY 2017 RTE 1st Call, #870

Irradiation Effect in the Heterogeneous Hardening of Cast Austenitic Stainless Steels - FY 2016 RTE 2nd Call, #649

Nanoindentation testing of neutron irradiated 304 stainless steels hex-blocks - FY 2017 RTE 2nd Call, #938

Sample Preparation for Ex-situ Transmission Electron Microscopy Study of Deformation-induced Twinning and Martensite in Two 316L Austenitic Stainless Steels: Role of Stacking Fault Energy and Grain Orientation - FY 2017 RTE 2nd Call, #933

TEM investigation of radiation damage of ferrite in CF-3 - FY 2017 RTE 2nd Call, #969