Benjamin Maerz

Publications:
"Data related to the mesoscopic structure of iso-graphite for nuclear applications" Benjamin Maerz, Kenny Jolley, James Marrow, Zhaoxia Zhou, Malcolm Heggie, Roger Smith, Houzheng Wu, Data in Brief Vol. 19 2018 651-659 Link
The data in this article are related to the research article “Mesoscopic structure features in synthetic graphite” (März et al., 2018) [1]. Details of the manufacture of isostatically moulded graphite (iso-graphite), thin foil preparation by focused ion beams (FIB) for analysis, and characterisation methods are provided. The detailed structures of coke filler and binding carbon are presented through scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and Raman spectroscopy characterisation. Atomistic modelling results of mesoscopic structural features are included.
"Mesoscopic structure features in synthetic graphite" Benjamin Maerz, Kenny Jolley, James Marrow, Zhaoxia Zhou, Malcolm Heggie, Roger Smith, Houzheng Wu, Materials and Design Vol. 142 2018 268-278 Link
The mesocopic structure features in the coke fillers and binding carbon regions of a synthetic graphite grade have been examined by high resolution transmission electron microscopy (TEM) and Raman spectroscopy. Within the fillers, the three-dimensional structure is composed of crystal laminae with the basal plane dimensions (La) of hundreds nanometres, and thicknesses (Lc) of tens of nanometres. These laminae have a nearly perfect graphite structure with almost parallel c-axes, but their a–b planes are orientated randomly to form a “crazy paving” structure. A similar structure exists in the binding carbon regions, with a smaller La. Significantly bent laminae are widely seen in quinoline insoluble inclusions and the graphite regions developed around them. The La values measured by TEM are consistent with estimates from the intensity ratios of the D to G Raman peak in these regions. Atomistic modelling finds that the lowest energy interfaces in the crazy paving structure comprise 5, 6 and 7 member carbon rings. The bent laminae tend to maintain the 6 member rings, but are strained elastically. We suggest that a 7 member carbon ring leaves a cavity representing an arm-chair graphite edge contributing to the Raman spectra D peak.
"Near-surface structure and residual stress in as-machined synthetic graphite" Benjamin Maerz, Kenny Jolley, Roger Smith, Houzheng Wu, Materials and Design Vol. 159 2018 103-116 Link
We have used optical and electron microscopy and Raman spectroscopy to study the structural changes and residual stress induced by typical industrial machining and laboratory polishing of a synthetic graphite. An abrasion layer of up to 35 nm in thickness formed on both machined and polished surfaces, giving the same ID/IG ratios evidencing graphite crystal refinement from an La of ~110 nm down to an average of 21 nm, but with different residual compression levels. For the as-polished sample, structural change was limited to the near surface region. Underneath the as-machined surface, large pores were filled with crushed material; graphite crystals were split into multi-layered graphene units that were rearranged through kinking. Graphite crystal refinement in the sub-surface region, measured by La, showed an exponential relationship with depth (z) to a depth of 35–40 μm. The positive shift of the G band in the Raman spectrum indicates a residual compression accompanied by refinement with the highest average of ~2.5 GPa on top, followed by an exponential decay inside the refined region; beyond that depth, the compression decreased linearly down to a depth of ~200 μm. Mechanisms for the refinement and residual compression are discussed with the support of atomistic modelling.
Presentations:
"Neutron irradiation effects on the microstructure of nuclear graphite" Jose Arregui-Mena, Benjamin Maerz, Cristian Contescu, Anne Campbell, Philip Edmondson, Yutai Katoh, NuMat 2018 October 14-18, (2018)