Joe Palmer

Profile Information
Name
Joe Palmer
Institution
Idaho National Laboratory
Position
Reactor Experiment Designer
h-Index
ORCID
0000-0003-3588-4427
Publications:
"Irradiation Testing of Ultrasonic Transducers" Joshua Daw, Gordon Kohse, Joe Palmer, Pradeep Ramuhalli, Brian Reinhardt, Joy Rempe, Bernhard Tittmann, Robert Montgomery, Jean-Francois Villard, H. T. Chien, ANIMMA 2013 Special Edition, IEEE Transactions on Nuclear Science Vol. 61 2013 1-7 Link
Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.
"Updated Results of Ultrasonic Transducer Irradiation Test" Joshua Daw, Gordon Kohse, Joe Palmer, Brian Reinhardt, Joy Rempe, Pradeep Ramuhalli, Paul Keller, Robert Montgomery, Hual-Te Chien, Bernhard Tittmann, Jean-Francois Villard, ANIMMA - Institute of Electrical and Electronics Engineers Vol. 2015 Link
Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation.
Presentations:
"Irradiation Testing of Ultrasonic Transducers" Joshua Daw, Gordon Kohse, Joe Palmer, Pradeep Ramuhalli, Brian Reinhardt, Joy Rempe, Bernhard Tittmann, 2013 Conference on Advancements in Nuclear Instrumentation, Measurements Methods (ANIMMA 2013) June 23-27, (2013)
NSUF Articles:
DOE Awards Eight CINR NSUF Projects - Projects include $3M in access grants and R&D funding Monday, July 6, 2020 - Calls and Awards
2020 NSUF Annual Review - Presentations The 2020 NSUF Annual Review presentations are now available online Tuesday, December 15, 2020 - DOE, Annual Review, Presentations