"Tritium generation, release, and retention from in-core fluoride salt irradiations"
Kieran Dolan, Guiqiu Zheng, Kaichao Sun, David Carpenter,
Progress in Nuclear Energy
Vol. 131
2021
Link
Further understanding of tritium transport mechanisms in the combined molten fluoride salt and graphite environment is necessary for the design and licensing of a Fluoride-Salt-Cooled High-Temperature Reactor (FHR). The three in-core fluoride salt irradiations completed at the Massachusetts Institute of Technology Reactor (MITR) are a useful parallel for studying transport phenomena expected in a FHR environment. During the irradiations, evolution of tritium from the flibe salt was monitored and compared to the calculated total generation rate. A difference of 22 ± 10% between the integrated calculated tritium generation rate and the total release was measured for the third MITR irradiation (FS-3). The fraction of tritium which was not released from the salt could be explained by tritium retention in graphite. For post irradiation examination, a thermal desorption furnace was used to heat nuclear graphite samples in order to release and measure retained tritium. The desorption analysis in this work utilized seven subsections of graphite from the second salt irradiation (FS-2); three from a disc of IG-110U and four from ARB matrix graphite. Observed desorption versus temperature as well as total tritium content in the samples after irradiation indicate that the graphites were not volumetrically saturated with tritium, but rather tritium retention was likely limited to the near-surface region. Measurements of the samples resulted in 2.90 ± 0.29 μCi/mm2 of tritium retained by IG-110U and 1.83 ± 0.31 μCi/mm2 for ARB during the 300 h FS-2 in-core irradiation. Based on the desorption measurements, the estimated total tritium retention in graphite from the FS-2 samples is consistent with the tritium release measurements from the FS-3 experiment. |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program