"Impact of Fabrication Techniques on U-10wt%Mo Fuel Microstructure Irradiated to Low Burnup" Sukanya Majumder, Gyuchul Park, Daniel Murray, Benjamin Beeler, Maria Okuniewski, Gyuchul Park, ANS Annual Meeting Vol. 2023 383-385 |
"High-Resolution TEM Characterization of Neutron-Irradiated U-10Mo Fuel in the Low Temperature and Low Burnup Regime" Sukanya Majumder, Gyuchul Park, Tiankai Yao, Kaustubh Bawane, Cameron Howard, Kourtney Wright, Laura Hawkins, Brandon Miller, Jonova Thomas, Benjamin Beeler, Maria Okuniewski, Materials in Nuclear Energy Systems (MiNES) December 11-14, (2023) | |
"Impact of Fabrication Techniques on U-10wt%Mo Fuel Microstructure Irradiated to Low Burnup" Sukanya Majumder, Gyuchul Park, Daniel Murray, Benjamin Beeler, Maria Okuniewski, ANS Annual Meeting June 11-14, (2023) |
"Electric current-assisted manipulation of liquid metals using a stylus at micro-and nano-scales"
Sukanya Majumder, Anuj Ashok, Kaustav Roy, Rudra Pratap, Praveen Kumar, Vijayendra Shastri,
[2022]
Nanotechnology
· DOI: 10.1088/1361-6528/aca76e
· ISSN: 0957-4484
A novel methodology, based on wetting and electromigration, for transporting liquid metal, over long distances, at micro-and nano-scale using a stylus is reported. The mechanism is analogous to a dropper that uses ‘suction and release’ actions to ‘collect and dispense’ liquid. In our methodology, a stylus coated with a thin metal film acts like the dropper that collects liquid metal from a reservoir upon application of an electric current, holds the liquid metal via wetting while carrying the liquid metal over large distances away from the reservoir and drops it on the target location by reversing the direction of electric current. Essentially, the working principle of the technique relies on the directionality of electromigration force and adhesive force due to wetting. The working of the technique is demonstrated by using an Au-coated Si micropillar as the stylus, liquid Ga as the liquid metal to be transported, and a Kleindiek-based position micro-manipulator to traverse the stylus from the liquid reservoir to the target location. For demonstrating the potential applications, the technique is utilized for closing a micro-gap by dispensing a minuscule amount of liquid Ga and conformally coating the desired segment of the patterned thin films with liquid Ga. This study confirms the promising potential of the developed technique for reversible, controlled manipulation of liquid metal at small length scales. |
|
Source: ORCID/CrossRef using DOI |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program