Thomas Lillo

Profile Information
Name
Dr. Thomas Lillo
Institution
Idaho National Laboratory
Position
Senior Materials Scientist
Biography

I am a metallurgical engineer with 20+ year experience in various aspects of materials science. I have mainly focused on characterization of mechanical properties of metal alloy - quasi-static and creep characterization - as well as microstructural characterization, including SEM, EBSD, TEM and x-ray diffraction. I also characterized diffusion product transport in irradiated TRISO fuel for the VHTR program. Recently, I have shifted my focus somewhat to research fusion arc welding processes, including hybrid laser arc welding of advanced nickel-based alloys for fossil energy applications and fusion arc welding-based additive manufacturing of very large components. 

Expertise
Creep Fatigue, Welding
Publications:
"Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel" Thomas Lillo, Isabella van Rooyen, Journal of Nuclear Materials Vol. 460 2015 97-106 Link
Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number of nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 µm along a radial direction through the 35 µm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 µm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all grain boundaries and triple junctions contained precipitates with fission products and/or uranium, along with the differences in migration behavior between Pd, Ag and U, it was concluded that crystallographic grain boundary and triple junction parameters likely influence migration behavior.
"Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel" Thomas Lillo, Isabella van Rooyen, Journal of Nuclear Materials Vol. 473 2016 83-92 Link
In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.
"Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel" Thomas Lillo, Isabella van Rooyen, Yaqiao Wu, Nuclear Engineering and Design Vol. 305 2016 277-283 Link
Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low-angle, high-angle, and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed needs to be significantly greater than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be accurately determined but significantly larger analysis areas would be required than those used in this study.
"Silicon carbide grain boundary distributions, irradiation conditions, and silver retention in irradiated AGR-1 TRISO fuel particles" Jeffery Aguiar, Thomas Lillo, Isabella van Rooyen, Nuclear Engineering and Design Vol. 329 2018 46-52 Link
Distributions of silicon carbide grain boundary types (random high angle, low angle, and coincident site lattice-related boundaries), were compared in irradiated tristructural isotropic-coated fuel particles from the Advanced Gas Reactor-1 experiment exhibiting high (>80%) and low (<19%) Ag-110m retention. Grain orientation from transmission electron microscope-based precession electron diffraction data, and, ultimately, grain boundary distributions, indicate irradiated particles with high Ag-110m retention correlate with lower relative fractions of random, high-angle grain boundaries. An inverse relationship between the random, high-angle grain boundary fraction and Ag-110m retention was found and is consistent with grain boundary percolation theory. Also, the SiC grain boundary distribution in an irradiated, low Ag-110m retention, Variant 1 particle was virtually identical to that of a previously reported as-fabricated (unirradiated) Variant 1 TRISO particle. Thus, SiC layers with grain boundary distributions associated with low Ag-110m retention may have developed during fabrication and were present prior to irradiation, assuming significant microstructural evolution did not occur during irradiation. Finally, irradiation levels up to 3.6 × 1025 n/m2 and 16.7% fissions per initial metal atom were found to have little effect on association of fission product precipitates with specific grain boundary types in particles exhibiting between 19% and 80% Ag-110m retention.