"Solid state welding of the nanostructured ferritic alloy 14YWT using a capacitive discharge resistance welding technique"
Calvin Lear, Jonathan Gigax , Matt Schneider, Todd Steckley, Thomas Lienert, Stuart Maloy, Ben Eftink,
Metals
Vol. 12
2021
23
Link
Joining nanostructured ferritic alloys (NFAs) has proved challenging, as the nano-oxides that provide superior strength, creep resistance, and radiation tolerance at high temperatures tend to agglomerate, redistribute, and coarsen during conventional fusion welding. In this study, capacitive discharge resistance welding (CDRW)—a solid-state variant of resistance welding—was used to join end caps and thin-walled cladding tubes of the NFA 14YWT. The resulting solid-state joints were found to be hermetically sealed and were characterized across the weld region using electron microscopy (macroscopic, microscopic, and nanometer scales) and nanoindentation. Microstructural evolution near the weld line was limited to narrow (~50–200 μm) thermo-mechanically affected zones (TMAZs) and to a reduction in pre-existing component textures. Dispersoid populations (i.e., nano-oxides and larger oxide particles) appeared unchanged by all but the highest energy and power CDRW condition, with this extreme producing only minor nano-oxide coarsening (~2 nm → ~5 nm Ø). Despite a minimal microstructural change, the TMAZs were found to be ~10% softer than the surrounding base material. These findings are considered in terms of past solid-state welding (SSW) efforts—cladding applications and NFA-like materials in particular—and in terms of strengthening mechanisms in NFAs and the potential impacts of localized temperature–strain conditions during SSW. |
"Capacitive Discharge Resistance Welding of 14YWT and Other Alloys" Calvin Lear, Ben Eftink, Lindsey Lindamood, Todd Steckley, Matt Schneider, Jerry Gould, Thomas Lienert, Stuart Maloy, TMS 2020 Annual Meeting & Exhibition February 23-27, (2020) | |
"Impact of Capacitive Discharge Resistance Welding on the Radiation Tolerance of 14YWT Cladding" Calvin Lear, Hyosim Kim, Matt Schneider, Todd Steckley, Yongqiang Wang, Thomas Lienert, Stuart Maloy, Ben Eftink, Structural Materials for Innovative Nuclear Systems (SMINS-6) September 12-15, (2022) |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program