Bong Goo Kim

Profile Information
Bong Goo Kim
Korea Atomic Energy Research Institute
Pricipal Researcher
"Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation" Bong Goo Kim, Lizhen Tan, Gary Was, Journal of Nuclear Materials Vol. 495 2017 425-430 Link
The influence of the directionality of Fe2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Nanoprecipitate evolution dependence on beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.
"Microstructural evolution of neutron-irradiated T91 and NF616 to ~4.3 dpa at 469 °C" Kevin Field, Bong Goo Kim, Lizhen Tan, Yong Yang, Sean Gray, Meimei Li, Journal of Nuclear Materials Vol. 493 2017 12-20 Link
Ferritic-martensitic steels such as T91 and NF616 are candidate materials for several nuclear applications. This study evaluates radiation resistance of T91 and NF616 by examining their microstructural evolutions and hardening after the samples were irradiated in the Advanced Test Reactor to ∼4.3 displacements per atom (dpa) at an as-run temperature of 469 °C. In general, this irradiation did not result in significant difference in the radiation-induced microstructures between the two steels. Compared to NF616, T91 had a higher number density of dislocation loops and a lower level of radiation-induced segregation, together with a slightly higher radiation-hardening. Unlike dislocation loops developed in both steels, radiation-induced cavities were only observed in T91 but remained small with sub-10 nm sizes. Other than the relatively stable M23C6, a new phase (likely Sigma phase) was observed in T91 and radiation-enhanced MX → Z phase transformation was identified in NF616. Laves phase was not observed in the samples.
"Microstructural evolution of NF709 (20Cr–25Ni–1.5 MoNbTiN) under neutron irradiation" Bong Goo Kim, Lizhen Tan, Yong Yang, Cheryl Xu, Xuan Zhang, Meimei Li, Journal of Nuclear Materials Vol. 470 2016 229-235 Link
Because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ∼76% was estimated by nanoindentation, approximately consistent with the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.
"Development of an In-situ Creep Testing Capability for the Advanced Test Reactor" Bong Goo Kim, Joy Rempe, Bulent Sencer, 7th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human Machine Interface Technologies November 7-11, (2010)