"Multiple ion beam irradiation for the study of radiation damage in materials"
Stephen Taller, David Woodley, Elizabeth Getto, Anthony Monterrosa, Zhijie Jiao, Ovidiu Toader, Fabian Naab, Thomas Kubley, Shyam Dwaraknath, Gary Was,
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Vol. 412
2017
1-10
Link
The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures. |
||
"Resolution of the carbon contamination problem in ion irradiation experiments"
Stephen Taller, Gary Was, Zhijie Jiao, Anthony Monterrosa, David Woodley, Dylan Jennings, Thomas Kubley, Fabian Naab, Ovidiu Toader, Ethan Uberseder,
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Vol. 412
2017
58-65
Link
The widely experienced problem of carbon uptake in samples during ion irradiation was systematically investigated to identify the source of carbon and to develop mitigation techniques. Possible sources of carbon included carbon ions or neutrals incorporated into the ion beam, hydrocarbons in the vacuum system, and carbon species on the sample and fixture surfaces. Secondary ion mass spectrometry, atom probe tomography, elastic backscattering spectrometry, and principally, nuclear reaction analysis, were used to profile carbon in a variety of substrates prior to and following irradiation with Fe2+ ions at high temperature. Ion irradiation of high purity Si and Ni, and also of alloy 800H coated with a thin film of alumina eliminated the ion beam as the source of carbon. Hydrocarbons in the vacuum and/or on the sample and fixtures was the source of the carbon that became incorporated into the samples during irradiation. Plasma cleaning of the sample and sample stage, and incorporation of a liquid nitrogen cold trap both individually and especially in combination, completely eliminated the uptake of carbon during heavy ion irradiation. While less convenient, coating the sample with a thin film of alumina was also effective in eliminating carbon incorporation. |
||
"Technical Aspects of Delivering Simultaneous Dual and Triple Ion Beams to a Target at the Michigan Ion Beam Laboratory "
Ovidiu Toader, Gary Was, Fabian Naab, Ethan Uberseder, Thomas Kubley, Stephen Taller,
Physics Procedia
Vol. 90
2017
385-390
Link
The Michigan Ion Beam Laboratory (MIBL) at the University of Michigan in Ann Arbor, Michigan, USA, plays a significant role in supporting the mission of the U.S. DOE Office of Nuclear Energy. MIBL is a charter laboratory of the NSUF (National Scientific User Facility – US DoE) and hosts users worldwide. The laboratory has evolved from a single accelerator laboratory to a highly versatile facility with three accelerators (3 MV Tandem, a 400 kV Ion Implanter and a 1.7 MV Tandem), seven beam lines and five target chambers that together, provide unique capabilities to capture the extreme environment experienced by materials in reactor systems. This capability now includes simultaneous multiple (dual, triple) ion irradiations, an irradiation accelerated corrosion cell, and soon, in-situ dual beam irradiation in a transmission electron microscope (TEM) for the study of radiation damage coupled with injection of transmutation elements. The two beam lines that will connect to the 300 kV FEI Tecnai G2 F30 microscope are expected to be operational by the end of 2017. Multiple simultaneous ion beam experiments involving light and heavy ions are already in progress. This paper will outline the current equipment and will focus on the new capability of running dual and triple ion beam experiments. |
"Technical Aspects of Delivering Simultaneous Dual and Triple Ion Beams to a Target at the Michigan Ion Beam Laboratory" Stephen Taller, Ovidiu Toader, Gary Was, Conference on the Application of Accelerators in Research and Industry, CAARI 2016 October 30-6, (2016) |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program