William Harris

Profile Information
Name
William Harris
Institution
Massachusetts Institute of Technology
Position
Graduate Student
h-Index
ORCID
0000-0003-2122-6757
Publications:
"Measurement and Simulation of Thermal Conductivity of Hafnium-Aluminum Thermal Neutron Absorber Material" Donna Guillen, William Harris, Metallurgical and Materials Transactions E Vol. 3 2016 123-133 Link
A metal matrix composite (MMC) material composed of hafnium aluminide (Al3Hf) intermetallic particles in an aluminum matrix has been identified as a promising material for fast flux irradiation testing applications. This material can filter thermal neutrons while simultaneously providing high rates of conductive cooling for experiment capsules. The purpose of this work is to investigate effects of Hf-Al material composition and neutron irradiation on thermophysical properties, which were measured before and after irradiation. When performing differential scanning calorimetry (DSC) on the irradiated specimens, a large exotherm corresponding to material annealment was observed. Therefore, a test procedure was developed to perform DSC and laser flash analysis (LFA) to obtain the specific heat and thermal diffusivity of pre- and post-annealment specimens. This paper presents the thermal properties for three states of the MMC material: (1) unirradiated, (2) as-irradiated, and (3) irradiated and annealed. Microstructure-property relationships were obtained for the thermal conductivity. These relationships are useful for designing components from this material to operate in irradiation environments. The ability of this material to effectively conduct heat as a function of temperature, volume fraction Al3Hf, radiation damage, and annealing is assessed using the MOOSE suite of computational tools.