"Characterization of stress corrosion cracks in Ni-based weld alloys 52, 52M and 152 grown in high-temperature water"
Yi Xie, Yaqiao Wu, Jatuporn Burns, Jinsuo Zhang,
Materials Characterization
Vol. 112
2016
87-97
Link
Ni-based weld alloys 52, 52M and 152 are extensively used in repair and mitigation of primary water stress corrosion cracking (SCC) in nuclear power plants. In the present study, a series of microstructure and microchemistry at the SCC tips of these alloys were examined with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) and energy filtered transmission electron microscopy (EFTEM). The specimens have similar chemical compositions and testing conditions. Intergranular (IG) and transgranular (TG) SCC was observed in all of them. The cracks were filled with nickel-oxides and partial precipitations of chrome carbides (CrCs), niobium carbides (NbCs), titanium nitrides (TiNs) and silicon carbides (SiCs), while iron (Fe) was largely dissolved into the solution. However, the crack densities, lengths and distributions were different for all three specimens. |
NSUF awards 30 Rapid Turnaround Experiment proposals - Approximately $1.53M has been awarded. Tuesday, June 14, 2022 - Calls and Awards |
NSUF awards 22 Rapid Turnaround Experiment proposals - Thursday, September 14, 2023 - Calls and Awards |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility ยท Vulnerability Disclosure Program