"Atom probe tomography analysis of high dose MA957 at selected irradiation temperatures"
Nathan Bailey, Peter Hosemann, Erich Stergar, Mychailo Toloczko,
Journal of Nuclear Materials
Vol. 459
2015
225-234
Link
Oxide dispersion strengthened (ODS) alloys are meritable structural materials for nuclear reactor systems due to the exemplary resistance to radiation damage and high temperature creep. Summarized in this work are atom probe tomography (APT) investigations on a heat of MA957 that underwent irradiation in the form of in-reactor creep specimens in the Fast Flux Test Facility–Materials Open Test Assembly (FFTF–MOTA) for the Liquid Metal Fast Breeder Reactor (LMFBR) program. The oxide precipitates appear stable under irradiation at elevated temperature over extended periods of time. Nominally, the precipitate chemistry is unchanged by the accumulated dose; although, evidence suggests that ballistic dissolution and reformation processes are occurring at all irradiation temperatures. At 412 °C–109 dpa, chromium enrichments – consistent with the a' phase – appear between the oxide precipitates, indicating radiation induced segregation. Grain boundaries, enriched with several elements including nickel and titanium, are observed at all irradiation conditions. At 412 °C–109 dpa, the grain boundaries are also enriched in molecular titanium oxide (TiO). |
||
"The crystal structure, orientation, relationships and interfaces of the nanoscale oxides in nanostructured ferritic alloys" Yuan Wu, Jim Criston, Stephan Kraemer, Nathan Bailey, G. Robert Odette, Peter Hosemann, Acta Materialia Vol. 111 2016 108-115 Link |
Characterization of CANDU Core Internals via Small Scale Mechanical Testing - FY 2015 RTE 1st Call, #530
Characterization of reactor irradiated ODS materials using Local Electrode Atom Probe Tomography. - FY 2012 RTE Solicitation, #361
Micro-structural and -chemical Investigations of the Short-Term Annealing of Irradiation-Induced Late Blooming Phase Precipitates in a High-Ni Reactor Pressure Vessel Steel Weld - FY 2017 RTE 1st Call, #782
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program