"Irradiation resistance of silicon carbide joint at light water reactor–relevant temperature"
Yutai Katoh, Takaaki Koyanagi, James Kiggans, Tatsuya Hinoki, Hesham Khalifa, Christian Deck, Christina Back,
Journal of Nuclear Materials
Vol. 488
2017
150-159
Link
Monolithic silicon carbide (SiC) to SiC plate joints were fabricated and irradiated with neutrons at 270–310 °C to 8.7 dpa for SiC. The joining methods included solid state diffusion bonding using titanium and molybdenum interlayers, SiC nanopowder sintering, reaction sintering with a Ti-Si-C system, and hybrid processing of polymer pyrolysis and chemical vapor infiltration (CVI). All the irradiated joints exhibited apparent shear strength of more than 84 MPa on average. Significant irradiation-induced cracking was found in the bonding layers of the Ti and Mo diffusion bonds and Ti-Si-C reaction sintered bond. The SiC-based bonding layers of the SiC nanopowder sintered and hybrid polymer pyrolysis and CVI joints all showed stable microstructure following the irradiation. |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program