"The Impact of Superconducting Properties of Micron-Scale Masked Proton Irradiation on BaTiO3-Doped YBCO Film"
Paththini Kuttige S. Nonis, Sudaice Kazibwe, Liangzi Deng, Ching-Wu Chu, Di Chen,
[2025]
Quantum Beam Science
· DOI: 10.3390/qubs9020013
This study investigates the effects of 60 keV proton irradiation on BaTiO3-doped YBa2Cu3O7−δ (YBCO) films using masks with micron-scale holes to create controlled defect patterns aimed at enhancing superconducting properties. Contrary to expectations, masked irradiation resulted in a reduction in the critical current density (Jc), while unmasked irradiation demonstrated improvement, consistent with previous studies. Notably, no improvement was observed at 2 T around liquid nitrogen temperature. These observations highlight the challenges of employing micron-scale masks in defect engineering and underscore the need for further refinement to achieve the desired performance enhancement. Insights from this study contribute to advancing defect engineering techniques for improving YBCO’s performance in high-field applications, including fusion energy systems. |
|
Source: ORCID/CrossRef using DOI |
The Nuclear Science User Facilities (NSUF) is the U.S. Department of Energy Office of Nuclear Energy's only designated nuclear energy user facility. Through peer-reviewed proposal processes, the NSUF provides researchers access to neutron, ion, and gamma irradiations, post-irradiation examination and beamline capabilities at Idaho National Laboratory and a diverse mix of university, national laboratory and industry partner institutions.
Privacy and Accessibility · Vulnerability Disclosure Program