

Nuclear Science User Facility

NSUF Irradiation Experiments

Brenden Heidrich

Acting Chief Irradiation Scientist

Annual NSUF Program Review DOE Headquarters Germantown, MD November 1, 2016

INL/LTD-16-40338

Nuclear Energy

Nuclear Science User Facilities

IRRADIATION EXPERIMENTS

Experimental Parameters 🤇 🗊

of Interest to Users

1. Temperature (magnitude & variation)	Passive or Active in-pile
2. Neutron Fluence & Spectrum	Passive or Active in-pile
3. Gamma Fluence & Spectrum	Active in-pile only
4. Microstructure	PIE
5. Density	PIE
6. Swelling	PIE
7. Cracking	PIE
8. Hardness	PIE
9. Mechanical Strength (tension)	PIE
10. Thermal Conductivity	PIE
11. Heat Capacity	PIE
12. Coefficient of Thermal Expansion	PIE
13. Creep	PIE
14. Chemistry/Corrosion	PIE

Drop-in / Static Capsule

Experiments

Nuclear Energy

Project	Reactor	Position	Material	Parameters
UCF-242(3)	ATR	B _S 0.875"	Advanced Fuels	1,2,4,5,6,14
BSU-269(A)	BR-2	I-14 3.25"	Advanced fuels	1,2,4,5,6,7,10,11,12,13,14
BSU-8242	ATR	A _I 0.625"	AM metal	1,2,4,6,7,8,9,14
INL-8389	MITR	ICSA	sensors	1,2,3, performance
GEH-10393	ATR	B _L 1.5" or loop	AM metal	1,2,4,7,9
ISU-10537	ATR	B _S 0.875"	AM metal	1,2,4,9,13,14
CSM-10584	ATR	B _S 0.875"	AM metal	1,2,4,10,11,14

Doses range from ~0 to 6 dpa in these experiments

Rabbit Experiments

Nuclear Energy

Project	Reactor	Position	Material	Parameters
UCF- 242(2)	ATR	B-7(HSIS) 0.875"	Advanced Fuels	1,2,4,5,6,14
ORNL- 10468	HFIR	CFT (HTS) 0.500"	Various SiC materials	1,2,4,6,10
ORNL- 10764	HFIR	CFT (HTS) 0.500"	PyC-SiC (TRISO)	1,2,4,14

These experiments cannot have instrument leads connected.

Doses range from ~0 to 2 dpa in these experiments

- ATR ~1 dpa in 1.5 cycles (84 days)
- HFIR ~2 dpa in 1.0 cycle (25 days)

In-Pile Sensor Initiative

Nuclear Energy

Collaboration between Boise State University and the INL.

Multidisciplinary effort:

- Material Science
- Modeling and Simulation
- Advanced Manufacturing
- Sensor Design and Testing

Goals

- 1. Provide new, **needed capabilities** for in-pile measurement of critical materials behavior
- 2. Reduce the **development lifecycle** for new in-reactor instrumentation
- 3. Improve data quality and quantity
- 4. Accelerate data availability
- 5. Increase probability for uses of **breakthrough technologies** in in-pile instrumentation
- Supported through NSUF access and Infrastructure grants

University of Central Florida (FY 2010)

Nuclear Energy

	UCF-242(2)	UCF-242(3)	
Purpose	Metallic fuels at low fluences (AFCI, MMM)		
Reactor	ATR	ATR	
Position	B-7	B-8	
Туре	HSIS (2x6 capsules)	Drop-in (13 capsules)	
Damage/Fluence	0.01 & 0.1 dpa	1.0 dpa	
Environment	150-700°C	150-800°C	
Principle Investigator	Yongho Sohn		
Technical Lead	Emmanuel Perez		
Irradiation Manager	Nick Mecham		
Materials	DU, AI, DU ₁₀ Mo, Zr, Fe, Fe ₁₅ Cr ₂₀ , Fe ₁₅ Ni ₂₀		
Forms	Diffusion couples	DC, TEM, MPC	
Status	On hold	RTI 160B	

Note: 1 dpa in steel \approx 0.7 x10²¹ n/cm² fluence

Boise State University (FY 2010)

	BSU-269A	BSU-269B
Purpose	U_3Si_2 fuel interaction (PCI)	U_3Si_2 fuel corrosion
Reactor	ATR	BR-2
Position	I-14	TBD
Туре	Drop-in	PWC Module (BR-2)
Damage/Fluence	10 & 20 GWD/MTU	
Environment	300, 750,1200°C	Water / Steam <350°C
Principle Investigator	Darryl Butt (l	Jniv. of Utah)
Technical Lead	Jasor	n Harp
Irradiation Manager	Nick M	lecham
Materials	U ₃ Si _{2,} Zr, FeCrAl, SiC	$U_3Si_{2,}UN/U_3Si_2$
Forms	Diffusion couples	Water interaction
Status	Design review underway	Early planning stages

Boise State University (FY 2015)

9

	BSU-8242
Purpose	HIP-PIM metals (weldability/inspectability)
Reactor	ATR
Position	A (4 positions)
Туре	Drop-in
Damage/Fluence	1 & 3 dpa
Environment	300 & 400°C
Principle Investigator	Janelle Wharry (Purdue Univ.)
Technical Lead	Donna Guillen
Irradiation Manager	Katie Anderson
Materials	Alloy 625, 690, Grade 91, 304L, 316L SA 508 (cast/forged and PM-HIP)
Forms	TEM disks and tensile bars (16x4x1mm)
Status	Conceptual Design Review (10/24-27), RTI (May 2017)

General Electric-Hitachi (FY 2016)

	GEH-10393
Purpose	Direct Metal Laser Melting (DMLM) - reactor internal repair parts, fuel debris resistant filters, and fuel spacers
Reactor	ATR
Position	TBD (large B-pos)
Туре	Drop-in
Damage/Fluence	0.5-1.4 dpa
Environment	Gas-cooled (280-300°C)
Principle Investigator	Ronald Horn
Technical Lead	John Jackson
Irradiation Manager	Nick Mecham
Materials	316L SS & Alloy 718(PH)
Forms	Tensile bars, crack-growth rate, fracture toughness bars
Status	Conceptual Design Review underway

Idaho State University (FY 2016)

	ISU-10537
Purpose	Nanostructured austenitic and ferritic/martensitic (F/M) steels that are anticipated to have enhanced irradiation tolerance
Reactor	ATR
Position	B-6 (8 capsules)
Туре	Drop-in (8 capsules)
Damage/Fluence	2 & 6 dpa
Environment	Gas-cooled (300 & 500°C)
Principle Investigator	Haiming Wen (ISU/INL)
Technical Lead	Keith Jewell
Irradiation Manager	Leslie Soderquist
Materials	Steel specimens manufactured using equal-channel angular pressing (ECAP) and high-pressure torsion (HPT)
Forms	Tensile, hardness, and TEM
Status	Initiated experiment design process (complete 5/31/2017)

Colorado School of Mines (FY 2016)

	CSM-10584
Purpose	First-ever irradiation performance data for stainless steel and Inconel specimens produced using commercially available additive manufacturing techniques
Reactor	ATR
Position	B-5
Туре	Drop-in
Damage/Fluence	0.05, 0.1, 1.0 dpa
Environment	Gas-cooled (325°C)
Principle Investigator	Jeffrey King
Technical Lead	Donna Guillen
Irradiation Manager	Katie Anderson
Materials	Adv. manufactured 316L SS and Inconel-718
Forms	Tensile bars and multi-purpose disks
Status	Initiated experiment design process (complete 6/30/2017)

Idaho National Laboratory (FY 2015)

	INL-8389	
Purpose	Sensor qualification: fission gas release, fission gas composition, and axial temperature measurement.	Mineral
Reactor	MITR-II	cable
Position	In-Core Sample Assembly (ICSA)	1
Туре	Instrumented Lead	
Damage/Fluence	1.0x10 ²¹ n/cm ²	4
Environment	Dry He/Ar mix (< 900°C)	
Principle Investigator	Joshua Daw (INL)	-Piezoelectric
Technical Lead	Joshua Daw (INL)	disc
Irradiation Manager	Lin Wen Hu (MIT)	- Cavity
Materials	INL-enhanced CEA pressure sensor, ultrasonic	To the
Forms	thermometer and fiber optics.	fuel rod ↓
Status	Design of test capsule is ongoing. RTI by 1/31/2017	

Oak Ridge National Laboratory (FY 2016)

	ORNL (YK) - 10468
Purpose	SiC-based cladding w/ radial heat flux
Reactor	High-Flux Isotope Reactor (HFIR)
Position	CFT HTS
Туре	Rabbit (6 capsules)
Damage/Fluence	2 dpa
Environment	300°C (with added heat flux in 1/2)
Principle Investigator	Yutai Katoh
Technical Lead	Kory D. Linton (ORNL)
Irradiation Manager	Chris Bryan (ORNL)
Materials	CVD SiC, composite SiC and coated SiC tubes with Mo heating liner
Forms	Straight tube – 16(l)x8.5(d)x0.7(t)mm
Status	RTI – 9/29/2017

Oak Ridge National Laboratory (FY 2016)

	ORNL (TG) - 10784	
Purpose	Radiation-Enhanced Diffusion of Ag, Ag-Pd, Eu, and Sr	Liner/Temperat Monitors
Reactor	HFIR	Internal
Position	CFT HTS	Retainer Diffusic Couple
Туре	rabbit	Figure 2: Cansule Badial Cross-Section
Damage/Fluence	0.5, 1.0 dpa	
Environment	1100°C	Dow CVD SiC
Principle Investigator	Tyler Gerczak	Insulators
Technical Lead	Kory D. Linton (ORNL)	Dow CVD SiC
Irradiation Manager	Chris Bryan (ORNL)	1100°C Retainer
Materials	Ion-implanted PyC/SiC	
Forms	Diffusion Couples (6x6x1mm)	
Status	Thermal analysis due 8/30/2017	

Nuclear Energy

Neutron Irradiations

ATR-C, 1, 2% **TREAT**, 1, 2% ATR, 18, 32% NRAD, 2, 3%_ **NIST-NBSR**, 1, 2% NCSU, 5, 9% MITR, 10, 17% HFIR, 19, 33%

Including:

- Gamma Irradiation
 - 2x ATR
 - 2x HFIR
- PWR Loop
 - 1x ATR
 - 1x MITR
- Instrumented Lead
 - 1x ATR

Light Source (X-Ray) Requests

Usability Improvements

Nuclear Energy

In order to better support the users of the NSUF access programs:

• Developing web-based tools to help users and NSUF Tech Leads:

1. ATR Experiment Database

- Leslie Soderquist (NSUF Exp. Mgr.) and Monica Gehrig (intern)

2. Irradiation resource selection

- Neutron flux and spectrum for NSUF reactors
 - · Most efficient allocation of resources
- Convert Neutron Fluence to DPA
 - Materials scientists request dpa
 - Reactor engineers think in terms of fluence
 - · Compound materials can be difficult

3. Estimate sample activity following irradiation

- Estimate time to be able to ship samples
- Determine facilities that can accept materials
- Estimate dose from characterization procedures
- Also for materials in the NFML

1. ATR Irradiation Testing Tool

Nuclear Energy

https://nst.inl.gov/irradiationtesting Idaho National Laboratory Nucleus Search INL & People Ø Home Organizations • Researcher Salety Services Tools • A-Z + Add to Persenalized Lioks Irradiation Testing Documents 416.21 Additional Useful Tools Nuclear Material Experiments Irradiated in the Advanced Test Reactor - Nacarit DPA Calculator tradition Testing in the ATE This page is designed to assist users with aquiring information about positions and the experiments is each position. To view information about each group of positions or to see a list of To download the files that can calculate an estimate of the displacements per atom of a experiments inadiated in each position, dick on the position. To see a position's diameter, mouse over the position in the image. Notebook sample after it has been eradiated in ATR, dick the link below. After the file is downloaded, you need to extract the contents to a folder. Further instruction is included Site Contents in the apped file under nit1, manual.pdf. Tool to Calculate DPA of a Sample **CN-10** ON-1 CN-1 List of Experiments To see the list of experiments directly, click the following link. Experiment List and Documents Updating Instructions Click on the link to open instructions on how to update the experiment list and ON 2 experiment popitions. Updating Tidonal Adding a New Experiment Updating Tutorial: Adding a Document 2 20 Intern Expo Presentation To see the video presentation and overview of this project, click on either of the links below. CN-4 CN-1 CN-2 CN-3 Presentation Lennix) Presentation Lmovil CW-4 CE-1

2. Irradiation Guidance Input (dpa target)

Nuclear Energy

What material will you be using? Fe

Would you like to examine
1) A certain core position.
2) A certain reactor.
3) All reactor positions in the database.
3

Would you like to calculate 1) damage from flux? Or 2) flux from damage? 2

How long was your sample exposed (in seconds)? 9e+6

What is the DPA level of your sample after removal? 9

2. Irradiation Guidance Flux Output (dpa target)

Nuclear Energy

Flux magnitude for the experiment was **3.904159E+01** in core position **ATR Small-I** Flux map has been output to "fluxmap.csv".

Flux magnitude for the experiment was 9.631117E+01 in core position ATR Medium-I

Flux map has been output to "fluxmap.csv".

Flux magnitude for the experiment was 1.386013E+02 in core position ATR Large-I Flux map has been output to "fluxmap.csv".

Collapsed cross sections output to "xscollapsed.csv". Analysis complete, enter any value to exit.

39x normal flux in that position

3. Specimen Activity Calculation Tool

- Tracks isotopic transmutations over an irradiation exposure, keeping tracks of in-core decay, decay during cycle down time and sample cooling after removal.
- This system can determine isotopic abundances after an experiment or for a specimen in the NFML.

- The user can input any combination of initial isotopic abundances, as well as supporting a number of well known compound materials.
- The user can request a specific activity or dose rate, and the program will accurately predict the amount of cool down time needed for the sample.

FY2017 Plans (1/2)

Nuclear Energy

Integrated Infrastructure Enhancement Program

- 1. NEID
 - Gap Analysis Activities (6/30/2017 Milestone)
 - Ion Beam Roadmapping Workshop (9/28/2017 Milestone)
 - Thermal Hydraulics Workshop (9/28/2017 Milestone)
 - » likely molten salt, liquid metal, gas and light water
 - » Informed by GAIN Technology Workshops
 - Partner and potential partner site visits
 - Capability RFI rewrite and reissue

2. NFML

- Inventory consolidation and standardization
- Site visits to ORNL, ANL, LANL and PNNL
- Materials RFI (3/30/2017 Milestone)
- International collaborations
- Report on the status of the NFML and the future plans (9/28/2017 Milestone)

FY2017 Plans (2/2)

Nuclear Energy

3. Project Database

- NSUF funded projects
- Proposals
- Reports & papers
- Data (eventually)

4. Expertise Database

- Internal & External SME
 - start with the NS&E Sourcebook
 - Collaboration or "match-making" resource
 - Supports GAIN

5. Deployment of NSUF Experimenter Storefront

- Linking of databases and completion and deployment of tools to the web
- Experiment design tool

6. NE-52 Infrastructure Program management

- FOA through awards (new NSUF web portal by 11/23/2016)

Contact Information for NSUF

Nuclear Energy

Brenden Heidrich (208) 526-8117 <u>Brenden.Heidrich@INL.gov</u>

NSUF-Infrastructure.INL.gov

DISCELAIMER

- This information was prepared as an account of work sponsored by an agency of the U.S. Government.
- Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
- References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof.
- The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

INL/LTD-16-40338

Nuclear Energy

Nuclear Science User Facilities

NEUTRON IRRADIATION CAPABILITIES

Research & Test Reactors

Reactor	Country	Thermal Flux [10 ¹⁴ nv]	Fast Flux [10 ¹⁴ nv]	Utilization		
JOYO	Japan		40	Material, fuel		
BOR-60	Russia	2	35	Material, isotopes		
HFIR	US-TN	25	10	Isotopes, beam, fuel, material		
BR-2	Belgium	10	7.1	Fuel & material, isotopes		
ATR	US-ID	10	5	Material, fuel, isotopes		
HANARO	S. Korea	4.5	3	Isotope, beam, fuel, material		
SAFARI-1	S. Africa	2.4	2.8	Isotopes, beam, radiography		
OSIRIS	France	0.27	2.6	Material and fuel		
OPAL	Australia	3	2.1	Beam science		
NBSR	US-MD	4	2	Neutron scattering, beam		
MITR	US-MA	0.5	1.7	Material, beam, silicon		
MURR	US-MO	6	1	Material, silicon, isotopes		
HBWR	Norway	1.5	0.8	Material, fuel		
PULSTAR	US-NC	0.3	0.3	Isotope, silicon, beams		

Test Reactor (ATR) Irradiation Types

Nuclear Energy

Simple Static Capsules

- Reflector positions or flux traps
- Structural materials, isotopes, fuel specimens

Instrumented Lead Experiments

- On-line experiment measurements
- With or without temperature control
- Structural materials, cladding tubes, fuel pins

Pressurized Water Loops

- Five presently installed in flux traps
- Control pressure, temperature & chemistry
- Structural materials, cladding tubes, fuel assemblies

Hydraulic Shuttle Irradiation System

- ≤14 capsules in a set
- Inserted and removed during reactor operations

Simple Static Capsule Experiments

- Passive instrumentation (flux wires, melt wires)
- Enclosed in sealed tube, or fuel plates
- Temperature target controlled by varying gas mixture in conduction gap and with material selection
- Lengths up to 48"; diameter 0.5" – 5.0"
- Used for isotope production, fuel and material testing

Cross section of ATR vessel

Instrumented Lead Experiments

- On-line experiment measurements
- Temperature control range 250-1200°C, within +/- 5°C
- Monitoring of temperature control exhaust gases for experiment performance (e.g., fission products, leaking materials, etc.)
- Specialized gas environments (oxidized, inert, etc.)

Hydraulic Shuttle Irradiation System

- 14 shuttle capsules
- Simultaneously irradiated
- Flux, at 110 MW: Thermal Flux: 2.5x10¹⁴ n/cm²-s Fast (>1MeV): 8.1x10¹³ n/cm²-s
- <u>Dimensions</u>:
 - ~ 0.55" ID, ~2.1" IL
 - 7 cc useable volume35 gm Contents
- Can irradiate small amounts of fissile material (10mg)

Advanced Test Reactor

MIT Nuclear Reactor Laboratory

- The MITR has the capability to perform a wide range of experiments in the reactor core.
 - An inert gas-filled irradiation tube (ICSA) for sample capsule irradiation at <900 °C (instrumented or un-instrumented)
 - Forced-circulation coolant loops that replicate conditions for both PWR and BWR
 - **High temperature** (>900°C) irradiation facility for materials irradiations in He/Ne mixture
 - Custom, dedicated facilities for irradiations in unique conditions (e.g., molten fluoride salts).
 - Thermal flux 0.4x10¹⁴ n/cm²-s
 - Fast flux (>0.1 MeV) 1.2x10¹⁴ n/cm²-s.

High Flux Isotope Reactor (HFIR)

1. Experiments in ATR Positions

Nuclear Energy	N	lu	cl	e	a	r	E	n	e	r	g)	
----------------	---	----	----	---	---	---	---	---	---	---	---	---	--

Idaho National La	borotory Irrad	iation Testing					Search INL & People		
Home Organizations •	Researcher	Safety Services Tools • A-Z					* Add to Personalbard Lin		
Home Documents 418.21	Larg	e I Positions							
Recent.	Click on each exp	element to view the associated documents.	General In	formation		Back to Experiment Positions in the			
Notebook	experiment	Positions	Information for total power average of 110 MWtp. 22 MWtp in each lobe				Advanced Test Reactor		
Site Contents	1604-1	(44)	Location	Diameter (inches)	Thermat Flux (n/cm ² -s)	Fast Flux (n/cm ² -s)	Click on the image to return to the previous page		
	1588-1	CONTROL CONTROL OF THE OWNER OWNER OWNER OWNER	Kurth Flux Trup	1.250	4.40+14	0.71=13.	benersensetset.		
	158A-1		West Flue Trap	E290	AAE+14	0.7E+11	0606060606		
	1570-1		East Alex Trop	8.290	4.46+14	9.7E+13			
	157C-1	(1111)	South Hus Imp	3-259	- MARTERIA	9.71=13			
	157A-1	(444)	Camber Alias Trapi	8.160	4.46+14	9.71+13			
	136A-1		fundbasist this Trap	5,575	4.46+54	221+14			
	2528	-	Knitheast Oke Togic	8.123	4.01(+3.0	221+10			
	155 A		Southwest Rice Your	1.250	4.46+3.4	9.7E+13			
	1548		Southeast Flux Top	8.290	4.45+14	9,71+11			
	154A	1.444	Small # Position	0.875	2:31+14	(K.3.E = 2.0	COG DC		
	1538	((444)	Large B. Position	1.500	L1E+34	1.61+11	0.000		
	153A		Items-A Position	0.025	L8E+34	1.7E+14	Sec. Sec.		
	1528		Outer A Publication	0.50000.4125	228(+14	101+14	2020 m 2020		
	1104		11-repla	0.629	L9E+34	1.7E±14	2020F #3020		
	1918-1	nul.	Small L-Postpion	1.500	8.4E+13	1.2E+12			
	151A	(1222)	Medium P Pullium	8.259	1.48+11	1-16+17			
	1308	Sectors	Large I-Position	5.000	1.7E+13	1.3E+12			
	1504	100000 10000							
	1.408	972W4	Position Elevation	Drawing					

1. ATR Experiment Documentation

		Experiment Name : 2A-C-BU (12)	Experiment Name : AFIP-7 (25)	P Experiment Name : MANTRA-2 (11)	
Idaho National Ia	horatory Nucleus	Experiment Name : AECL (7)) Experiment Name : AGC-1 (27)	Experiment Name : MANTRA-3 (10)	
		¹ Experiment Name : AFC-1D (19)	³ Experiment Name : AGC-2 (17)	¹ Experiment Name : NCSU (16)	
Home Organizations •	Researcher Safety Services Tools • A-Z	Experiment Name : AFC-IG (26)	Experiment Name : AGC-3 (14)	> Experiment Name : NEW HSA COBALT	
Hama		¹⁾ Experiment Name : AFC-1H (28)	Experiment Name : AGC-4 (10)	Experiment Name : OLD HSA COBALT	
Home	Irradiation Testing		Experiment Name : AGR-1 (42)	Experiment Name : OLD HSA COBALT	
Documents		¹⁹ Experiment Name : AFC-2A (18)	¹ Experiment Name : AGR-2 (25)	Experiment Name : RERTR-10 (21)	
410.21	E	³ Experiment Name : AFC-28 (19)	Experiment Name : AGR-3/4 (30)		
+ Recent	All Items 2A-C-BU AECL ··· Find an item	⁽⁾ Experiment Name : AFC-2C (16)	Experiment Name : ATF-1 (31)	Experiment Name : RERTR-13 (21) Experiment Name : RERTR-6 (19) Experiment Name : RERTR-7 (25)	
Irradiation Testing in the ATR		^{[-} Experiment Name : AFC-2D (16)	Experiment Name : ATF-2 (1)		
Notebook	Experiment Name Experiment Document Document Type	Experiment Name : AFC-2E (12)	Experiment Name : DREXEL (29)		
Site contents	Experiment Name : 2A-C-BU (12)	Funariment Name : AFC.3A (18)	Experiment Name : EPRI-1 (16)		
	Document Type : DP (1)		Experiment Name : EPRI-2 (15)	Experiment Name : RERTR-8 (22)	
	Secondar (Percer (-)	P Experiment Name : AFC-38 (18)	P Experiment Name : EPRI-3 (15)	⁽⁾ Experiment Name : RERTR-9 (24)	
	Document Type : Drawing (6)	Experiment Name : AFC-BC (16)	V Experiment Name : EPRI-2G (17)	Experiment Name : SAM-1 (8)	
	▷ Document Type : ECAR (3)	> Experiment Name : AFC-3D (18)	Experiment Name : GD (7)	¹⁾ Experiment Name : TMIST-1 (18)	
	Document Type - ESAD (1)	^b Esperiment Name : AFC-3F (19)	Experiment Name : GFR-F1-2 (11)	> Experiment Name : TMIST-2 (20)	
	· bouncit (perioxi (a)	Experiment Name : AFC-4A (13)	Experiment Name : GTL (17)) Esperiment Name : TMIST-3 (20)	
	▷ Document Type : TEV (1)	Experiment Name : AFC-48 (36)	Esperiment Name : HAFNIUM (7)	¹⁾ Experiment Name : UCF-1 (15)	
	Experiment Name : AECL (7)	Experiment Name : AFC-4C (12)	* Experiment Name : ISORAY (II)) Experiment Name : UCF-8 (1)	
	Document Type : Drawing (4)	Experiment Name : AFIP-1 (8)	Experiment Name : JNC (8)	P Experiment Name : UCSB-1 (11)	
		L English Marris Merris 2 (17)	Esperiment Name : KJRR (13)	⁽⁾ Experiment Name : UCSB-2 (17)	
	Document Type : ECAR (2)	· Experiment Name : Arir 2 (14)	> Experiment Name : LACE (3)	¹⁾ Experiment Name : UF (12)	
	Document Type : TEV (1)	Experiment Name : AFIP-3 (9)	> Experiment Name : LSA COBALT (8)	Experiment Name : UI (18)	
		Experiment Name : AFIP-4 (12)	Experiment Name : LUNA (11)) Experiment Name : USU (10)	
		Experiment Name : AFIP-6 (25)	Experiment Name : MANTRA-1 (11)	Experiment Name : UW (34)	

NSUF Experiment Storefront

Testing Strategy for Novel Materials

Nuclear Energy

Irradiation Testing Hierarchy

- 1. Ion Beams Irradiation Facilities
 - Allow immediate feedback of performance
 - Ease of instrumentation
 - Ease of environmental tuning

2. Low-Power Research Reactors

- First 1% and 10% testing
- Instrumentation development (pulsing for TREAT)
- Neutron radiography
- Experiment modeling & validation efforts

URR advantages:

- Ease of use & lower cost
- Expertise in handling and shipping/receiving RAM
- Co-located with Hot Cell facilities (sample preparation)

Standardized Capsule

Design for New Materials

Nuclear Energy

- 1. HSIS Test (closest to "standard")
- 2. Standardized "Drop-In" Capsule
 - Low Cost
 - More Experiments
 - Easier and Faster Accomplishment

Example

 Single Design for both I and A/H positions in ATR (idea from ⁶⁰Co work)

