High Flux Isotope Reactor

Description

The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light watercooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include:

- Flux trap positions: Peak thermal flux of 2.5X10¹⁵ n/cm²/s with similar epithermal and fast fluxes (Highest thermal flux available in the western world.)
- Reflector positions: Thermal fluxes of 1.0X10¹⁵ n/cm²/s ranging down to 1.0X10¹⁴ n/cm²/s in the outermost positions
- Two complimentary pneumatic tubes that shuttle samples from the core to the HFIR Neutron Activation Analysis (NAA) Laboratory
 - PT-1: 2.8X10¹⁴ n/cm²/s (Thermal/Epithermal = 40)
 - PT-2: 5.9X10¹³ n/cm²/s (Thermal/Epithermal = 200)
- Gamma irradiation Facility maximum does rate: 1.0X10⁸ R/hr

Applications

- Thermal and cold neutron scattering science
- Isotope production
 - Californium-252
 - Other transcurium isotopes for R&D
 - Lighter isotopes that require high flux for production
- Fission and fusion reactor materials irradiation studies
- Advanced reactor fuels irradiation studies

RNL is managed by	
T-Battelle for the	
S Department of Energy	

ornl.gov

Contact

Chris Bryan

865.241.4336

0 U U

bryancd@ornl.gov

Experiment Analysis Lead

Oak Ridge National Laboratory

Date: July 2014

Fuel

Therr

scatte

instru

Cold ı

scatte

instru

Flux 1

irradi

positi

Refle

irradi

positi

Mate Irradi

Facili

Neuti

Activa Analy

Gamr

Irradi

Facility

	water cooled and moderated, flux-trap type reactor
	Highly Enriched Uranium-235
nal neutron ering iments	3 horizontal beam tubes serving 7 instruments
neutron ering Iments	1 horizontal beam tube serving 5 instruments
rap region ation ons	30 target positions, 6 peripheral target positions
	1 hydraulic rabbit facility position
ctor region ation	42 vertical irradiation positions
ons	2 slant positions on reflector periphery
rials ation ty	This facility supports instrumented and/or gas cooled experiments
. y	-2 flux trap positions (2.5X10 ¹⁵ n/cm²/s)
	-8 reflector positions (1.0X10 ¹⁵ n/cm ² /s)
ron ation /sis	2 pneumatic tubes shuttle samples from the NAA Lab to the reflector region
na ation	In spent fuel flux trap

OAK RIDGE National Laboratory