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Conventional nuclear 
structural alloys degrade 
severely after hundreds 

of displacements per atom, 
inadequately meeting the needs 
of next-generation fast reactors 
and triggering an investigation of 
compositionally complex alloys 
(CCA). Preliminary studies have 
shown that these alloys exhibit 
excellent mechanical properties 
and irradiation tolerance at high-
temperature, promoting their 
candidacy for cladding and duct 
applications [1-20]. To investigate 
the fundamental mechanisms 
underlying the radiation 
resistance of compositionally 
complex base matrices, in situ 
dual-beam irradiations were 
performed on Cr18Fe27Mn27Ni28 and 
Cr15Fe35Mn15Ni35 at two elevated 
temperatures. Bubble populations 
were characterized at various 
dpa steps and compared to less 
compositionally complex  
reference materials.

Experimental or  
Technical Approach
Electropolished discs of 
Cr18Fe27Mn27Ni28 and Cr15Fe35Mn15Ni35 
were irradiated in situ using the 
300 keV Hitachi-9000 TEM at the 
IVEM-Tandem facility at Argonne 
National Laboratory (ANL) using a 
1 MeV Kr2+ and 16 keV He+ dual-ion 
beam with a He/dpa ratio of 0.75%/
dpa. Alloy selection, fabrication, 
preparation, precharacterization, 
and stopping range of ions in matter 
(SRIM) software inputs are detailed 
in references [11] and [3]. Pure Ni 
and a single-phase Fe56Ni44 binary 
alloy were used for reference against 
the two FCC CCAs. Two irradiation 
temperatures were selected: 500°C 
and 600°C. All irradiations but one 
were performed up to 7 dpa, as 
estimated by IVEM-developed 
correlations between counts 
measured by a Faraday cup and 
both SRIM and Iradina calculations 
for the dpa through a 100 nm-thick 
specimen [21, 22]. The 500°C Ni 
irradiation was performed to 1 dpa 
with a He/dpa ratio of 1%/dpa, as 
detailed in reference [23]. Dpa 
profiles for combined and individual 
ion species and He implantation are 
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shown in Figure 1. Bubble formation 
was confirmed using underfocused 
and overfocused conditions. Bubble 
diameters were measured using 
ImageJ software and used to 
calculate swelling levels. Lamellae 
thicknesses were measured by direct 
electron method (K2 camera) and a 
slit width of 15 eV.

Results
The bubble population for all 
materials at both temperatures at 
their final dpa is shown in Figure 
2. The average bubble diameters, 
bubble number densities, and 
swelling levels are plotted in Figure 
3. For each material, bubbles 
nucleate with higher density 
and with a smaller size at 500°C 
relative to 600°C, and the average 
diameter of bubbles remains higher 
at 600°C up to the maximum dpa. 
Due to the high density of bubble 
nucleation at 500°C, the swelling 

in Cr18Fe27Mn27Ni28 is slightly 
higher than at 600°C despite 
the limited bubble size (<2 nm 
diameter), which contrasts with the 
pure Ni and Fe56Ni44 binary alloy 
that exhibit significantly higher 
swelling at 600°C. The swelling 
levels in Cr15Fe35Mn15Ni35 at both 
temperatures are comparable; 
this indicates that although 
mobility is increased at 600°C, 
similar quantities of vacancies 
and interstitials can arrive at both 
bubbles and other sinks. Between 
the two temperatures, the bubble 
densities in Cr15Fe35Mn15Ni35 
are closer together than were 
seen in Cr18Fe27Mn27Ni28, which 
demonstrates a reduced 
temperature effect on the mobility 
of vacancies and He atoms. 
Swelling levels in the two CCAs are 
consistently lower than the less 
compositionally complex materials.

Figure 1. Kr2+ and He+ dpa and implantation 
profile for Cr18Fe27Mn27Ni28 generated by SRIM. 
Average of 1 dpa within first 100 nm. Kr2+ ions 
are high enough in energy to pass through 
the samples with minimal implantation.
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Figure 2. Bright-field micrographs of irradiated microstructures at final dpa of 1 dpa for pure Ni at 500°C [23] and 7 dpa for all other samples.

Discussion/Conclusion
Under favorable void-swelling 
conditions (i.e., dual-beam and high-
temperature), bubbles nucleated 
in all irradiated materials. Under 
single-beam irradiation at 50 K, it 
was shown that Cr18Fe27Mn27Ni28 and 
Cr15Fe35Mn15Ni35 experienced a lower 
primary point defect production 
term than pure Ni and E90, a FeNiCr 
ternary alloy [11]. This reduction 

likely slowed bubble growth in 
CCAs compared to pure Ni and 
Fe56Ni44. Reference [23] proposed 
that vacancies generated in pure 
Ni under dual-beam conditions 
trap He atoms, leading to uniform 
nucleation of bubbles. In CCAs, 
the more localized and denser 
bubble nucleation is attributed to 
a distorted lattice, further trapping 
vacancies and He atoms.
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Figure 3. (a) Average diameter, (b) number density, and (c) calculated swelling of irradiated materials with zoomed in 
swelling axis on the right for clarity.

(a)

(c)

(b)
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