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Advanced 
Fuels

Reduce High- 
level  Waste 

Volume

Improve Thermal 
Efficiency and 
Produce High 
Temperature 
Process Heat

H Fuel Cell
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Gas Cooled Fast Reactor Constraints

Condition Value
Melting temperature >2000oC

Radiation resiliency <2% Swelling over 
life time

Toughness >12 MPa m1/2

Thermal conductivity >10W/m/K

Neutronic Low σa

ZrN 
ZrC 
TiC 
TiN
SiC

Materials Selection

Candidates

• Applications 
• Matrix materials for dispersion fuel
• Coating materials for particle Fuel
•

 

Fission products diffusion barrier coating layer 
(ZrC) for TRISO Fuel

Presenter
Presentation Notes
Point out CERCER design/layers/function of layers.  Describe design constraints.  Mention candidates.  SiC leading candidate due to large knowledge base – irradiation experiments and experience from TRISO.  Information from SiC will be used as reference due to the close relation w/ other candidate materials.
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Radiation Damage and Effects

• Microstructural evolution
• Amorphization
• Dislocation loops and networks
• Voids
•

 

Microchemical

 

changes (segregation and 
precipitates) 

• Changes in properties
• Hardening and embrittlement
• Vulnerability to corrosion
• Reduction of thermal conductivity

PKA

<110>
<100>

Interstitial atoms

Close Frenkel

 

pair

diluted zone
Energy transport by 
focusing collisions
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ATR-PIE project 

Objectives:
Provide the microstructural data of the GFR candidate 
ceramics under neutron irradiation
Validate the using ion irradiation to understand the 
radiation effects from energetic neutrons in refractory 
ceramics

Materials:
ZrC, TiC, ZrN and TiN irradiated to 1 dpa at 800 ºC

Approaches:
TEM microstructural examination
Microhardness test
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Synergy with Other DOE Funded Projects

NERI ( Radiation-Stability of Candidate Materials for 
Advanced Fuel Cycles)

Determine and understand the radiation stability of advanced fuel 
candidate materials in response to proton irradiation at temperatures 
between 600-900°C

Deep-Burn (Development of Transuranic Fuel for High-
Temperature Helium-Cooled Reactors)

Study the radiation response of ZrC at 1100-1400 ºC
Transport of silver fission product in ZrC
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Approaches

Beam terminal (UW  Tandem Accelerator)

Proton irradiation (T: 600, 800, 900, 1100 and 
1400 ºC; and Dose: 0.35-3 dpa )

Irradiated microstructure characterization (TEM, HR-TEM/STEM) 

Neutron irradiation (T: 800ºC; and Dose: 1 dpa )

Ceramics  irradiated in a static capsule in ATR, INL

Microstructure and microchemical

 

changes 
studied using APS (J. Terry)

X-ray diffraction
Extended X-Ray Absorption Fine Structure (EXAFS)

Vickers Test
Micro Fracture TestVickers Test

Sample sealed in a triple-contained cell
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Univ. Wisconsin - Characterization Lab 
for Irradiated Materials (CLIM) 

TEM sample preparation: electro-polisher, 
dimpler

 

and ion mill in HEAP fume hood

Electron Microscopes:  JEOL 200CX, JEOL 6610 SEM

Post Irradiation Experiments (PIE):Post Irradiation Experiments (PIE): 
Characterization at U. WisconsinCharacterization at U. Wisconsin

ZrC TEM specimen prepared by 
dimpling and ion milling method
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Proton Irradiation Experimental

Real time monitoring of sample 
temperature and dose

Three thermocouples
Mikron Model 7302 infrared 
camera
Quadra beam aperture

UW Tandem Accelerator 
Facility 

Energy: 1.7 MV with 
capability of accelerating 
protons to 3.4 MeV
High Temperature: 600–
1400 oC (Sample 
temperature)
RF source and SNICS 
source (Source of Negative 
Ions by Cesium Sputtering)
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SRIM calculation

SRIM estimation of damage in ZrC irradiated with 
1x1019/cm2

 

2.6MeV protons 

The primary knock-on atom spectrum of ZrC irradiated 
with 2.6 MeV

 

protons as estimated from SRIM-2008

Probability density of PKAs

 

in ZrC 
irradiated in different conditions [Courtesy 
to D. Gosset

 

]

4 MeV

 

Au
HTR
FBR
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Proton Irradiation Conditions

Beam Energy 2.6 MeV
Materials CERCOM (Stoichiometry: C/Zr= 

1.01)
Zone-refined *

Temp (ºC) 600 800 900 1125

Dose (dpa) 0.35, 0.75 and 1.75 1 and 2

Item Target  Composition Measured C/Zr
1 ZrC08±0.5 0.84
2 ZrC09±0.5 0.89
3 ZrC1.0±0.5 0.95
4 ZrC1.1±0.5 1.05
5 ZrC1.2±0.5 1.17

* Zone-refined ZrC (Applied Physic Technologies, Inc. McMinnville, Oregon)
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Dose effect — ZrC irradiated at 600 ºC

Highly strained field

Bright Field Images g=200 near <011> zone axis
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Temperature effect

600ºC 800ºC 900ºC 1125ºC

Faulted loops b=a/3[111] Perfect loops b=a/2[110]
Size of dislocation loops

Loop density
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Temperature effects

Irradiation leads to changes in the near-boundary regions in the form of defect-

 
denuded zones and the width increase with the temperature (near-stoichometric)
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Stoichiometry effect

C/Zr=0.89 C/Zr=0.95 C/Zr=1.05

Size of dislocation loops

Loop density
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HR-TEM Images of DL (2 dpa, 1125 ºC)

132º
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2-beam diffraction patterns near z=[011]

Rel-rod image of Frank Loops in ZrC

[011] zone axis

Rel-rod streaks from faulted 
loops on planes [111]

¼ of total faulted loops

ZrC@0.35dpa ZrC@0.75dpa

0.75 dpa0.35 dpa

Fault loops in FCC can be treated as a 
thin platelet HCP structure because of 
the unique crystallographic relations 
between FCC and HCP lattice 
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Irradiation induced features in hyperstoichiometric ZrC

G
B

Voids along pre-existing dislocation line 
in irradiated hyper-stoichiometric ZrC1.05

Dislocation loop structure in the vicinity of a 
graphite precipitate in the irradiated ZrC1.17

Graphite
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Cross-sectional TEM, 1125 ºC

Peak region in irradiated zone-refined ZrC (C/Zr=0.89), where the dose 
equals to ~20 dpa, no irradiation voids were observed
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Summary on the microstructural evolution

Mat.
Conditions Dislocation loops

Voids/bubble

 
sTemp (ºC) Dose 

(dpa)
Density (x1023m-

3)
Mean size 

(nm)
Type

CERCOM (C/Zr=1.01) 600 0.35 2.7 <1 FL N

0.7 3.5 3.5±0.6 FL N

1.75 5.7 3.97±0.3 FL N

800 0.35 0.22 4.3±0.5 FL N

0.7 3.37 5.8±0.56 FL N

900 0.35 Na na N

0.7 0.24 10.6±0.4 PL Along GB

Zone-refined 
C/Zr=0.84

1125 2 0.026 10.23±0.3 PL

C/Zr=0.89 1125 2 0.0029 31.7±1.8 PL N

C/Zr=0.95 1125 2 0.015 14.6±0.6 PL

C/Zr=1.05 1125 2 0.079 17.9±0.9 PL Along GB 
and DL

C/Zr=1.17 1125 2 0.021 56.33±1.3 PL N
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XRD Characterization on Lattice change

Peak shifts to lower or high 2-theta values 
indicate lattice expansion or contraction due 
to irradiation

Typical XRD pattern for ZrC 
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Microhardness-hardening

~31μm

22° 6.6 μm

SRIM Simulation of collision 
events vs. depth in ZrC 

Presenter
Presentation Notes
for the 600 and 800 ºC irradiation, the microhardess increases with dose, showing the radiation hardening is more pronounced or 600 ºC than that of 800 ºC. For the 900 ºC irradiation, the hardening was first observed at 0.35 dpa while for the 0.7 dpa the material becomes softer possibly due to the high population of bubble clusters at the grain boundary. The increase of the microhardness is 5.8% for 0.35 dpa and 4.9% for 0.75 dpa at 900 ºC, which are lower than 12.5% for 0.35 dpa and 14% for 0.75 dpa at 800 °C. For the 600 ºC irradiation, the increases of hardess are 15.3%, 19.4% and 24.8% for the doses of 0.35, 0.75 and 1.75 dpa, respectively 
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R
em

oved layer

Proton Irradiation peak region

s

Nano-indentation on irradiated ZrC

Load vs. Time

Load vs. Depth

Hardness and Effective Young’s Modulus variation along 
the irradiation depth in ZrC with 0.75 dpa at 800 ºC

Impression from 
nano-indentation
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Fracture Toughness (Micro-indentation)

l
c

Sub-surface median cracks

a

Sub-surface lateral cracks

Vickers Indent

2al
c = l + a

Crack system produced 
from microindentation

Fracture toughness changes vs. dose at 800 ºC
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Fracture Toughness (Micro-cantilever)

Fracture the micro-cantilever using a 
nanoindenter

 

(Ti 950 Triboindenter, Hysitron) 

Fractography:  cleavage facets

Pre-crack

Irradiated 
surface

1

3 2
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Fracture Toughness (Micro-cantilever)
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~30% increment in fracture toughness !

Fracture toughness can be calculated using:

Fracture 
load
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Point Defect Formation Energy Calculation

EV_C = - +

Zr32

 

C32 Zr32C31 + CGraphite

64-atom supercell, k-points 4x4x4, Ecut=16 
Hartree, Vienna Ab-initio Simulation 
Package (VASP) has been utilized to run the 
ab initio calculation. 

    

   

(a) no defect (b) C vacancy (c) Zr vacancy 

(d) Zr antisite (e) C antisite (f) Zr or C interstitial 

Zr 
C Vacancy 

Zr or C 
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Summary on the point defect formation energy

Defect Cv Zrv ZrC CZr Ci Zri

Energy (eV) 0.93 8.54 7.93 11.36 5.46 8.72

• Carbon vacancy has the lowest formation energy
• Carbon antisite

 

has the highest formation energy
•

 

Carbon interstitials can position along [101], [111] and [100] directions. while 
the lowest energy of carbon interstitials is in [101] direction with energy of 3.56 
eV/defect 
•

 

The most stable Zr

 

interstitial is the tetrahedral site found along the [111] 
direction with energy of 8.72 eV/defect 
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Conclusions

•
 

The microstructure of proton irradiated ZrC at 600-1125ºC is 
dominated with dislocation and dislocation size and density increases 
with dose, but the density decreases vs. temperature. 

•
 

Voids along GB and DLs
 

were only observed in hyper-stoichiometric 
ZrC irradiated at 1125 ºC, and the sub-stoichiometric ZrC 
demonstrates a relatively enhanced radiation damage resistance.

•
 

Proton irradiation caused hardening, as well as the increment in
 fracture toughness.

•
 

Carbon vacancies and interstitials are energy favored point defects 
based on atomistic calculation.
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