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Overview 

•  Perspective on scattering for investigating radiation defects 

•  Scattering response of crystals with lattice defects 

•  Diffuse scattering theory for lattice defects 

•  Diffuse scattering for investigating precipitates and radiation induced loops 

•  Techniques for investigating displacement cascade dynamics on time scales  
 from milliseconds to picoseconds 
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•  The presentation emphasizes x-ray scattering, although the concepts discussed 
 apply to neutron and electron scattering as well 

•  Electron microscopy provides direct imaging of clustered defects, which is of 
 course the measurement of choice for electrons 

•  Neutron small angle diffuse scattering has been particularly useful in studies of 
 clustered defects such as voids and precipitates 

•  Neutrons are often more valuable for investigations that x-rays are not 
 able to address well (e.g. magnetism, hydrogenous materials, etc.) 

•  The lecture is meant to be used in conjunction with the below referenced book 
chapter review and references therein,* 

*B. C. Larson, “X-ray Diffuse Scattering Near Bragg Reflections For The Study Of 
Clustered Defects In Crystalline Materials,” in Diffuse Scattering and the 
Fundamental Properties of Materials, ed. Barabash, Ice, & Turchi (Momentum 
Press, New York, NY 2009).  [pdf copy provided]!

    (Cont.) 

Comments and Perspective 
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•  Radiation induced defects have important timescales from sub-picoseconds to  
 giga-seconds (~40 years – reactor lifetimes) – 20 orders of magnitude 

•  Damage includes dislocation loops, voids, dislocation tangles, radiation 
 enhanced precipitates, as well as grain-boundary impacted/denuded zones 
 and other local  microstructure effects.  

•  For ensembles of point defect clusters and microstructural complexities 
 there is no substitute for the direct imaging electron microscopy capabilities 

•  There is a tradeoff between direct observation on the one hand versus 
 non-destructive measurements, small cluster visibility, sequential 
 annealing experiments, and in-situ measurements on the other   

•  The employment of multiple measurement types and close connections 
 with theory and modeling is of almost indispensable value 

•  The interpretation of picosecond time-resolved diffuse scattering from 
 displacement cascades is an example in which molecular dynamics based 
 diffuse scattering simulations will be critical 

Comments and Perspective (cont.) 
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Dynamics of Irradiation Induced Defects 

2.75 nm 

0.3 ps!

2.75 nm!

Cascade Dynamics/Evolution Measurements Missing!

20 ps!

2.75 nm!
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Defect Diffuse Scattering in Crystals 

•  Perfect crystals scatter x-rays into sharp peaks at Bragg reflections 

•  Distortions from lattice defects decrease Bragg peak intensities and 
distribute scattering between Bragg peaks according to the size and 
magnitude of the lattice disruption.  
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BCC Real Lattice 

FCC Fourier Transform (FT) Lattice  
  (i.e. Reciprocal Lattice) 

Sharp spot FT lattice if the real 
lattice is perfect 

Fuzzy spot FT lattice if the real 
lattice has distortions 

(i.e. Diffuse Scattering) 

Real Space and Reciprocal Space (Fourier Transform) Connection 
Real and Reciprocal Space Scattering Geometry 

Real Space 
Scattering Geometry 

Reciprocal Space  
Scattering Geometry 

(000) (110) 

(110) Plane 

(110) Spot 
(Bragg Position) 

Bragg  
Spot 

Measuring positions in real 
and reciprocal space 

Useful to think of scattering 
measurements as “periodicity 
meters” in which the intensity 
denotes the relative volumes 

The direction in reciprocal space  
is normal to periodic planes for  
cubic crystal structures  
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H 
q 

K 

(i.e. Stokes-Wilson) 

Small Angle Scattering 
(density fluctuations) 

Diffuse Scattering Domain Schematic Diffuse Scattering Geometry Schematic 

2 2	


ko 
k 

= k-ko 

Diffuse Scattering As A Tool To Study Defects 

Bragg-diffuse scattering 
response to local rotation 
and strain fluctuations 

Small angle scattering 
response to electron 
density fluctuations 

Real space origin 
of Huang 
scattering  
and asymptotic 
scattering 
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K = H + q 

Diffuse Scattering from Spherical Precipitates 
 in Quenched and Aged Cu(1%)Co 

Asymptotic Diffuse 
     Scattering 

Huang Scattering 

   Bragg, Compton and     
Thermal Diffuse Scattering 

~R4 (loops), R6 (precip.) 

Long range distortions 
far from defect 

~R2 (loops), R3 (precip.) 

Short range distortions 
inside and near defect 
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To quantify scattering, we consider an incoming plane wave with intensity Io particles/
unit area/sec.  We then measure (at angles      ) the number of particles scattered into  
 a solid angle      , where I(      ) is the rate of particles detected and 

The scattering cross section for the sample is then defined by, 

Therefore, it is necessary to know the solid angle         at the detector        and the  
incident beam intensity Io onto the sample.    

� 

ΔΩ

� 

ΔΩ = A0 /R2 =
Area  of  Detector

(Distance from Sample)2

� 

eiK ⋅r

dσ (θ,φ)
dΩ

=
I(θ,φ)
I0 ⋅ ΔΩ

� 

ΔΩ

Cross-Sections and Scattering Geometry 

φ
θ

θ,φ
θ,φ

θ,φ
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• For N identical, randomly distributed defects or defect clusters                        z 

Cross-Sections and Scattering Geometry (cont.) 

� 

  I(θ,φ)
Io

 =  
dσ (θ,φ)  (ΔΩ)

dΩ
 =  dσ i(θ,φ)  (ΔΩ)

dΩi=1

N

∑  =  N dσ i(θ,φ)  (ΔΩ)
dΩ

            =  N dσ i(θ,φ)  (ΔΩ)
dΩ

 =  ρDVsample
dσ i(θ,φ)  (ΔΩ)

dΩ
    
      ρD  =  Density of defect scattering centers (defects/cm3 )
 vsample  =  Effective sample volume (i.e. considering absorption)
  (ΔΩ)  =  Solid angle subtended by the detector  (detector area/(distance2 ))

 Io  =  Po
A

 where Po is the power and A is the cross - sectional area of the beam

 vsample  =  A ⋅ teff ,   where   teff   is the effective thickness irradiated
              ( teff  is the sample thickness along the incident beam for no absorption)
 

   I(θ,φ)
Io

 =  ρDvsample
dσ i(θ,φ)  (ΔΩ)

dΩ
 =    I(θ,φ)

Po
A

 =  ρDA ⋅ teff
dσ i(θ,φ)  (ΔΩ)

dΩ
 

         We then get (independent of A) the result :  I(θ,φ) = PoρDteff
dσ i(θ,φ)  (ΔΩ)

dΩ

A 

teff 

No absorption 
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Cross-Sections and Scattering Geometry (cont.) 

� 

For the common cases of symmetric Bragg geometry and symmetric Laue geometry
and samples with a finite linear absorption coefficient, µ (cm-1 ),   teff  is given by 

              teff  =  e
−2µ0

t
sin(θ )

0

∞

∫
dt

sin(θ)
 =  1

2µ0

Symmetric Bragg Case

             teff  =  e
−µ0

t
sin(θ )

0

t0

∫
dt

sin(θ)
 =  t0

sin(θ)
e
−µ0

t0
sin(θ )  

Symmetric Laue Case

 

         I(θ,φ) = PoρD
dσ i(θ,φ)  (ΔΩ)

dΩ

Bragg case with absorption 

A 

q 

A 

to/sinq	


q 

� 

t0
sin(θ)

e
−µ0

t0
sin(θ )

� 

1
2µ0

Laue case with absorption 

� 

  teff  =  e
−2µ0

t
sin(θ )

0

∞

∫
dt

sin(θ)
 =  1

2µ0

� 

teff  =  e
−µ0

t
sin(θ )

0

t0

∫
dt

sin(θ)
 =  t0

sin(θ)
e
−µ0

t0
sin(θ )  

Laue  

Bragg 

q 
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dσ (K)
dΩ

= re f (K)
2 A(K) 2 = re fi (K)

i
∑ eiKiri

2

Separation of Bragg and Defect Diffuse Scattering 

For the kinematic case the total scattering is given by: 

ψ *ψ = ψ 2

φ
ψ

 Scattered Intensity 
   Perfect Crystal 

With defects ψ 2

Ensemble Average  
     Intensity 

dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Diffuse

=
dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Total

− 
dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Bragg

ψ 2 − ψ
2

Fluctuation or Diffuse Scattering ψ
2

Bragg Scattering 

A formal interference experiment shows 
(after adding and subtracting  
and rearranging) that only        is coherent 
and interferes with     .  [M. Lax, Rev. Mod. Phys.  

(1951); P. Dederichs, Solid State Physics (1972)] 

φ +ψ 2 = φ*φ + φ*ψ+ψ *φ  +ψ *ψ
ψ * ψ = ψ

2

φ +ψ 2 = φ + ψ
2
+ ψ 2 − ψ

2 ψ
φ

Total       Bragg               Diffuse 

 
re fi

i
∑ eiKiri

ψ

� 

bie
iK ⋅ri

i
∑

X-rays 

Neutrons 
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ψ 2 = re fi

i
∑ eiKiri

2

= re
2 fi

i, j
∑ f je

iKi(ri −rj )

 
ψ

2
= re fi

i
∑ eiKiri

2

= re fi
i
∑ eiKiri re f j

j
∑ e− iKirj

 

dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Diffuse

= ψ 2 − ψ
2
= re

2 fi f j
i, j
∑ eiqi(ri

o −rj
o ) eiKi(si − s j ) − eiKisi e− iKis j⎡
⎣⎢

⎤
⎦⎥

Single Defect Approximation for Diffuse Scattering 

For defects on statistically random sites in the average (i.e. periodic) expanded 
lattice with a defect-induced static Debye-Waller factor,       ,* 
diffuse scattering in the so-called “Single Defect Approximation” results:  

L(K) = c [1− cos(Kis(ri )]
i
∑

 

dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Diffuse

= re f j
deiHirj

d

eiqirj
d

j

nd

∑ + re fie
−L(K)eiqiri eiKis(ri ) −1⎡⎣ ⎤⎦

i
∑

2

 Sum over atoms 
 in defect cluster 

 Sum over atoms in distorted  
   lattice surrounding cluster 

 
re fi

i
∑ eiKiriψAssociating        with the scattering amplitude                       ,                         leads to   ψ 2 − ψ

2

*P.H.Dederichs, Phys.Rev. B4,1041 (1971) 



15  Managed by UT-Battelle 
 for the U.S. Department of Energy 

 

dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Diffuse

= re f j
deiHirj

d

eiqirj
d

j

nd

∑ + re fie
−L(K)eiqiri eiKis(ri ) −1⎡⎣ ⎤⎦

i
∑

2

Diffuse Scattering Cross-Section for Defect Clusters 

 Kis(q)
s(r) ~ 1 / r2

is known analytically and 

for finite clusters, so 

the lattice sum converges rapidly 

Accurate scattering cross-sections 
require the use of numerically 
calculated displacement fields s(r)   

This is very important to get 
accurate sizes & densities   

 
= iKis(q) + eiqiri − Kis(ri )( )2 / 2 + higher  order  terms⎡

⎣
⎤
⎦

i
∑

 
eiqiri eiKis(ri ) −1⎡⎣ ⎤⎦

i
∑ ≡ iKis(q) + eiqiri cos Kis(ri )( ) −1+ i sin Kis(ri )( ) − iKis(ri )⎡⎣ ⎤⎦

i
∑



16  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Precipitate Direct Scattering 

“Asymptotic” scattering: Local 
Bragg scattering from strained 
lattice surrounding precipitate 

Diffuse Scattering from Spherical Precipitates 
           in Aged Cu(1%)Co 

Loops in 
irradiated 
copper 

Spherical 
precipitates 
in aged 
Cu(1%)Co 

Calculated Measured 

[Larson & Schmatz, PRB 10, 2307 (1974)]  [Iida, Larson, and Tischler, J.Mat.Res. 3, 267 (1988)]  

� 

~ K ⋅ s(q) 2

Huang  
scattering: 
Long-range 
distortions 
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•  The small-q (Huang) region measures a high moment of defect radius and 
  no direct size information 

•  The measurement resolution (i.e. detector solid angle subtended) may  
 not be small enough obtain reliable information at small q.   

•  The so-called “asymptotic” region where the “local-Bragg” scattering  
  interpretation is valid provides the most direct, most reliable, and most 
  detailed information on defect cluster size distributions.  

•  q4 weighting minimizes the less informative intensities at small q.    

Diffuse Scattering for Cobalt Precipitates in Copper 

 = -1.44%  = -1.44% 

Intensity vs q 

< 65,70,75 A > 
Vol. weighted av.  

Need to avoid strong 
influence at small q, 
where resolution and 
crystal perfection 
have strong impacts 

Huang 
region 

Asymptotic 
region 

Asympt. 
region Huang 

region 

Asymptotic 
region 

Asympt. 
region 
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Direct defect scattering Distorted lattice scattering 

q4 Weighted Calculated Diffuse Scattering Cross-Section 
   for Spherical Precipitates in An Isotropic Medium 
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Diffuse Scattering for Cobalt Precipitates in Copper 

 = -1.44%  = -1.44% 

Intensity vs q 

< 65,70,75 A > 
Vol. weighted av.  

Need to limit strong 
influence at small q, 
where resolution and 
crystal perfection 
have strong impacts 

6000 
sec!
600o 
C!

q4•Intensity vs q 
q4 weighting puts 
intensities on a 
linear scale, it 
emphasizes the  
direct scattering 
from the defect, 
and resolution is 
less critical  
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= -1.42 % 
Co Precip. 

Precipitate Size Distribution  

I(K) = Io
2µo

ci (Ri )
dσ i (K,Ri )

dΩ
(ΔΩ

i
∑ )

Determination of The Size Distribution for Coherent  
Cobalt Precipitates in Aged Cu(1%)Co 

Fit           to measured intensity using  
numerically calculated cross- 
sections dσ i (K,Ri )

dΩ

ci (Ri )

H = (400) 

Cu(1%)Co 
Aged 16.7 hr 
570oC 

Diffuse Scattering Intensity 

•  Meas 
    Fit 

Spooner, Iida, & Larson, in Characterization of Defects  
in Materials, MRS 82, 79 (1987): MRS 82, 73 (1987) 

•   SANS 
     X-Ray  

= -1.42 % 
Co Precip. 

Precipitate Size Distribution Compared to  
Small Angle Neutron Scattering Results 
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Small Angle Neutron Scattering (SANS) Study of Coherent  
Cobalt Precipitates in Aged Cu(1%)Co 

SANS intensity contours on  
area detector at 6 m   

Cu(1%)Co 

Radially-averaged SANS intensities for 
2.5, 6, and 18 m measurements 

Cu(1%)Co 

Sample  

Area 
Detector  

Small Angle Neutron Scattering 

2.5 -18 m 

•  Small angle scattering represents (000) reflection – Scattering density   

Spooner, Iida, & Larson, in Characterization of Defects in Materials, MRS 82, 79 (1987): MRS 82, 73 (1987) 
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      Small Angle Neutron Scattering (SANS) Cu(1%)Co:                     
     Linear and q4 Weighted Scales; Measured and fitted 

In
te

ns
ity

 

Scattering Vector, q (nm-1) 

Fit 
Meas. 

Linear Scale 

In
te

ns
ity

 x
 q

4  

Scattering Vector, q (nm-1) 

q4 Weighted  Linear Scale  

Interparticle 
interference 

q4 minimizes impact 
 of interparticle 
interference region 

Fit 
Meas. 

•  Small angle scattering sensitive to scattering density fluctuations the 
relative to the host material, which is the precipitate particle in this case 

•  Interparticle interference is result of the fact that particles cannot be  
truly randomly positioned because they cannot overlap 
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•   SANS 
     X-Ray  

= -1.42 % 
Co Precip. 

Precipitate Size Distribution Compared to  
Small Angle Neutron Scattering Results 

      Recalling Comparison of Small Angle Neutron Scattering (SANS)   
and X-Ray Bragg Diffuse Scattering Size Distributions 

Spooner, Iida, & Larson, in Characterization of Defects in Materials, MRS 82, 79 (1987): MRS 82, 73 (1987) 
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Scattering Cross-Sections Calculated for Interstitial 
And Vacancy Loops in Copper 

ε ≈ − b
4R

H = (222) 

ε = −
b
4R

⇒
2.08
80

= −0.026  for  R = 20A ε = −
q
K222

⇒
0.135
6.04

= −0.029  for  R = 20A

Weighted by q4/R2  
Note that q4/R2 

removes the Huang 
divergence at q=0 
        and  
normalizes the 
scattering to the 
number of point 
defects in the loops 

[Larson & Young, Phys. Stat. Sol. (a) 104, 273 (1987)] 
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I(K) = Io
sin(θ)

ci (to,Ri )
dσ i (K,Ri )

dΩ
(ΔΩ

i
∑ ) ci (t)

ci (to )
e−2µot /sin(θ)dt

0

∞
∫ Calc. Defect Profile 

to 

Loop Size Distributions 

Interstitial and Vacancy Loops in Ion Irradiated Ni 

Diffuse Scattering  x q4 

•  Equal intensities for positive and negative q implies 
substantially equal numbers of vacancies and interstitials 
•  Vacancy loop sizes are smaller than interstitial loops 

•  X-Ray and TEM size distributions agree for R > 20 A 
•  TEM observations miss most vacancy loops/clusters 

[Larson et al, in Point Defects and Defect Interactions in Metals, Takamura, Doyama, & Kiritani (Tokyo, 1982), 679.] 
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Interstitial and Vacancy Loops in 4 K Neutron  
Irradiated Cu and After 60-300 K Anneals 

I*q4  (Cu) 

I*q4    (Meas. & Fits) 

R2*Size Dists. 

250 K 

[R. Rauch et al., J. Phys.: Condens. Matter 2, 9009 (1990)]  

Int. Vac. Int. Vac. 

• q4 weighted scattering (left) indicates vacancy and interstitial  
   loops in 4K neutron irradiated Cu for 60 -300k anneals 
• The maxima in the interstitial loop scattering (left) tends to  
   smaller q (i.e. larger radii) with higher temperature 
• The intensity maxima for vacancy loops (left) change only  
   slightly with annealing temperature 
•  The size distributions for vacancy and interstitial loops (right) 
   indicate interstitial agglomeration but no vacancy  agglomeration 

60 K 

170 K 

210 K 

250 K 

300 K 
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Submicron Depth Resolved Diffuse Scattering  
Measurements in 10 MeV Self-Ion Irradiated Si 

Diffuse Intensity Depth Profile 

[Updated analysis from:Yoon, Larson, et al, Appl. Phys. Lett. 75, 2791 (1999)] 
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Size Distributions and Ratio of Vac./Int. in Self-Ion  
Irradiated Si as A Function of Implantation Depth 

2

3

4
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b.
)

12840
Depth (µm)

0.75   m (FWHM)µ

 

10-7

10-6
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6040200
Radius (Å)

Vacancy 
d =1.80 µm
N'PD  = 0.002

10-7

10-6

10-5

10-4

6040200
Radius (Å)

Vacancy 
d = 3.45 µm
N'PD  = 0.0006

10-7

10-6

10-5

10-4 Interstitial 
d = 1.80 µm
N'PD  = 0.0002

10-7

10-6

10-5

10-4 Interstitial 
d = 3.45 µm
N'PD  = 0.002

10-7

10-6

10-5

10-4

6040200
Radius (Å)

Vacancy 
d = 4.25 µm
N'PD  = 0.0012

10-7

10-6

10-5

10-4 Interstitial 
d = 4.25 µm
N'PD  = 0.013
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1.8 µm 3.45 µm 4.25 µm 
Int.             Int.           Int.           

Vac.         Vac.             Vac. 

Vac.
Int.

= 10 Vac.
Int.

= 0.3
Vac.
Int.

= 0.09

•  The fraction of vacancies is 10x larger near the surface  
•  The fraction of vacancies is 10x smaller near the Si-ion end of range 
•  This result is consistent with the so-called vacancy implanter effect 
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Direct collision of  fast  
neutron with crystal atom  

Atomic Displacement Cascade Dynamics 

n 

Fundamental origin of!
radiation damage  !

occurs!
On Picosecond Time Scale!

But residual defects!
Evolve for Gigaseconds ! Cascade of atomic 

recoils 
Picosecond time-scale 

300 million degree atom 
recoil 

Femtosecond time-scale 
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Molecular Dynamics Simulations!

N
um

be
r o

f F
re

nk
el

 P
ai

rs
 

 

20 ps!

Low-Density!
Vacancies/Interstitials!

Small Clusters!

2.75 nm!

20 keV!

0.001          0.01             0.1                1               10 

101 

100 102 102 

103 

104 

100 

105 

Time  (ps)  

0.3 ps!

High-Density!
Vacancies/Interstitials!

2.75 nm!

LCLS 
100 fs!
1012 ph/pulse!

Sub-Picosecond X-Ray Pulses At the Linac Coherent Light Source (LCLS)!

    Fe!
(Stoller)!

Very Large Number of Molecular Dynamics Simulations of 
Cascades – Over 50 Years 

~t3!

~t1!

No Real-Time Measurements of Structural Dynamics ! 
Impact of Electronic Excitations is Not Included 

First Real-Time Measurements of Cascade Dynamics, and the !
First Direct Measurement of Electronic vs Ionic Partition!

2.75 nm 2.75 nm 
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0.49 
ps!

Cascade!
 atoms 

Cascade!
 strain 

300 fs 

0.19 
ps!

Cascade!
 atoms 

Cascade!
 strain 

Sub-picosecond Sensitivity of Diffuse Scattering to Cascade 
Dynamics Using 100-fs LCLS Pulses   



32  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Concluding Comments 
•  Radiation environment induced lattice defects have dynamics and 

evolution on time scales ranging from femto-seconds to giga-seconds 

•  Powerful theoretical frameworks exist for determining the response of 
scattering probes to lattice defects and defect clusters   

•  Diffuse scattering measurements combined with numerical cross-section 
calculations provide detailed information on defect clusters 

•  Accurate lattice displacements and strain fields surrounding defect clusters 
are critical for extracting defect cluster size distributions 

•  Diffuse scattering provides a method for pump-probe investigation of the 
dynamics and evolution of displacement cascades on picosecond and 
longer times scales using sub-picosecond x-ray pulses at the recently 
commissioned Linac Coherent Light Source (LCLS) 

•  Molecular dynamics and kinetic Monte Carlo simulations have not been 
tested experimentally below milliseconds – comparisons with time-resolved 
diffuse scattering will benchmark our understanding of cascade dynamics 
and defect evolution at early stages within cascade formation and evolution 
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Appendix 
 Supplementary Details and Studies 

•  Formal theory of scattering 
•  Theory of the coherent wave 
•  Huang diffuse scattering closed form 

expression 
•  Statement of single defect 

approximation 
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Particle Crystal 

Homogeneous solution  (V = 0) 

The Lippmann-Schwinger equation provides a formal solution for the scattering of a  
particle    by a crystal in a state       with an interaction potential V 

We need a solution for the scattering from a crystal with an “ensemble” of states 
(e.g. thermal vibrations, defect clusters) 

where 

Formal Theory of Scattering Solution for Defects 

� 

eik ⋅r

φk φα



35  Managed by UT-Battelle 
 for the U.S. Department of Energy 

This problem has been solved elegantly within the theory of the Coherent Wave by Lax*  
and more recently by Dederichs* through determining that part of the scattered wave  
         from a crystal with an ensemble of states that is fully coherent with (i.e. interferes with)  
the incident wave     .  Performing the interference experiment and averaging < > over states:   

*M. Lax, Rev. Mod. Phys. 23, 287 (1951); P.H. Dederichs, Solid State Physics 27,135 (1972). 

Coherent Wave Scattering from An Ensemble of States  

After (for convenience) adding and subtracting the term                                        , we get:  

where       is not affected by the crystal < > ensemble averaging.  This leads to: 

     This produces a factor containing                        that interferes with       and an additional 
term that is the well known form of a fluctuation term that is not absolutely coherent with                 
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eiqiri eiKis(ri ) −1⎡⎣ ⎤⎦

i
∑ ≡ iKis(q) + eiqiri cos Kis(ri )( ) −1+ i sin Kis(ri )( ) − iKis(ri )⎡⎣ ⎤⎦

i
∑

 

dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Diffuse

= re f j
deiHirj

d

eiqirj
d

j

nd

∑ + re fie
−L(K)eiqiri eiKis(ri ) −1⎡⎣ ⎤⎦

i
∑

2

Diffuse Scattering Cross-Section for Defect Clusters 

 Kis(q)
s(r) ~ 1 / r2

is known analytically and 

for finite clusters, so 

the lattice sum converges rapidly 

 
= iKis(q) + eiqiri − Kis(ri )( )2 / 2 + higher  order  terms⎡

⎣
⎤
⎦

i
∑

Accurate scattering cross-sections 
require the use of numerically 
calculated displacement fields s(r)   

This is very important to get 
accurate sizes & densities   

*B.C. Larson and W. Schmatz, Phys. Stat. Sol. (b), 99, 267 (1980) 
P.H.Dederichs, J. Phys. F: Metal Phys., 3, 471 (1973)  
P.H.Dederichs, Phys.Rev. B4,1041 (1971) 

Calculation of the Huang Scattering Term Using the Dipole Force Tensor*  
The dipole-force tensor with the Fourier transformed elastic Green function provide a closed 

form expression for the so-called Huang scattering amplitude 
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dσ (K)
dΩ

= re f (K)
2 A(K) 2 = re fi (K)

i
∑ eiKiri

2

Separation of Bragg and Defect Diffuse Scattering 

For the kinematic case the total scattering is given by: 

dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Diffuse

=
dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Total

− 
dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Bragg

Fluctuation or Diffuse Scattering 

For ri = perfiect lattice sites Bragg Scattering 

For ri = distorted lattice sites 
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Single Defect Approximation for Diffuse Scattering 

For randomly distributed defects (or clusters) with static Debye-
Waller factor given by, 

        
         

The diffuse scattering in the so-called “Single Defect 
Approximation” results is given by, 

 
L(K) = c [1− cos(Kis(ri )]

i
∑  ≈ c

Kis(ri )( )2
2i

∑

 

dσ K( )
dΩ

⎡
⎣⎢

⎤
⎦⎥Diffuse

= re f j
deiHirj

d

eiqirj
d

j

nd

∑ + re fie
−L(K)eiqiri eiKis(ri ) −1⎡⎣ ⎤⎦

i
∑

2

 Sum over atoms 
 in defect cluster 

 Sum over atoms in distorted  
   lattice surrounding cluster 

*P.H.Dederichs, Phys.Rev. B4,1041 (1971) 

,* 

This is a fundamental result discussed in more detail by Dederichs 


